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FUZZY IDEALS AND FUZZY SUBRINGS
UNDER TRIANGULAR NORMS

Inheung Chon

Abstract. We develop some basic properties of t-fuzzy ideals in
a monoid or a group and find the sufficient conditions for a fuzzy
set in a division ring to be a t-fuzzy subring and the necessary and
sufficient conditions for a fuzzy set in a division ring to be a t-fuzzy
ideal.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh ([8]). Rosen-
feld ([4]) used this concept to formulate the notion of fuzzy groups.
Since then, many other fuzzy algebraic concepts based on the Rosen-
feld’s fuzzy groups were developed. Anthony and Sherwood ([1]) re-
defined fuzzy groups in terms of t-norm which replaced the minimum
operation of Rosenfeld’s definition. Some properties of these redefined
fuzzy groups, which we call t-fuzzy groups in this paper, have been
developed by Sherwood ([6]) and Sidky and Mishref ([7]). Sessa ([5])
defined fuzzy ideals with respect to the triangular norms, which we
call t-fuzzy ideals in this paper, and developed their properties. As a
continuation of these studies, we characterize some basic properties of
t-fuzzy ideals and t-fuzzy subrings.

In the section 2 we develop some basic properties of t-fuzzy ideals in
a monoid or a group. In the section 3 we find the sufficient conditions
for a fuzzy set A in a division ring X to be a t-fuzzy subring without
the assumption of A(u) = 1, where u is the additive identity element in
X, and find the necessary and sufficient conditions for a fuzzy set in a
division ring to be a t-fuzzy ideal without the assumption of A(u) = 1.
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2. t-fuzzy ideals in a group or a monoid

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

Anthony and Sherwood ([1]) generalized the definition of a fuzzy
groupoid by Rosenfeld ([4]), that is, they replace the stronger condition
imposed by the minimum operation with a function T : [0, 1]× [0, 1] →
[0, 1], called a triangular norm, and they developed some properties of
fuzzy groupoids and fuzzy groups.

Definition 2.2. A t-norm is a function T : [0, 1] × [0, 1] → [0, 1]
satisfying, for each p, q, r, s in [0,1],

(1) T (0, p) = 0, T (p, 1) = p
(2) T (p, q) ≤ T (r, s) if p ≤ r and q ≤ s
(3) T (p, q) = T (q, p)
(4) T (p, T (q, r)) = T (T (p, q), r))

Definition 2.3. Let S be a groupoid and T be a t-norm. A func-
tion A : S → [0, 1] is a t-fuzzy groupoid in S if and only if for every x, y
in S, A(xy) ≥ T (A(x), A(y)). If X is a group, a fuzzy groupoid G is a
t-fuzzy group in X if and only if for each x ∈ X, G(x−1) = G(x).

For fuzzy sets U, V in a set X, UV has been defined in most articles
by

(UV )(x) =

{
sup
ab=x

min(U(a), V (b)) if ab = x

0 if ab 6= x.

The following definition by Sessa ([5]) generalizes the above sup-min
operation.

Definition 2.4. Let X be a set and let U, V be two fuzzy sets in
X. UV is defined by

(UV )(x) =

{
sup
ab=x

T (U(a), V (b)) if ab = x

0 if ab 6= x.
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Proposition 2.5. Let X be a set and let U, V, and W be fuzzy
sets in X. If X is associative, then (UV )W = U(V W ).

Proof. See Proposition 8 in [2]. ¤

Definition 2.6. Let S be a semigroup and let A,B, C be fuzzy
sets in S. The fuzzy set A is a t-fuzzy left ideal if and only if A(xy) ≥
A(y). The fuzzy set B is called a t-fuzzy right ideal if and only if
B(xy) ≥ B(x). The fuzzy set C is a t-fuzzy ideal if and only if C(xy) ≥
max(C(x), C(y)).

Proposition 2.7. Let B be a fuzzy subset in a monoid S. Then

(1) SB (or BS) is a t-fuzzy left (or right) ideal of S.
(2) SBS is a t-fuzzy ideal of S.

Proof. (1) Since S is a monoid, SS = S. From Proposition 2.5,
(SS)B = S(SB) and B(SS) = (BS)S. Since S(x) = 1, SB(xy) =
((SS)B)(xy) = (S(SB))(xy) ≥ T (S(x), (SB)(y)) = (SB)(y). Since
S(y) = 1, BS(xy) = (B(SS))(xy) = ((BS)S)(xy) ≥ T ((BS)(x), S(y))
= BS(x).
(2) Since S is a monoid, SS = S. From Proposition 2.5, (SS)BS =
S(SBS) and SB(SS) = (SBS)S. Thus SBS(xy) = ((SS)BS)(xy) =
(S(SBS))(xy) ≥ T (S(x), (SBS)(y)) = (SBS)(y) and SBS(xy) =
(SB(SS))(xy) = ((SBS)S)(xy) ≥ T (SBS(x), S(y)) = (SBS)(x). ¤

Definition 2.8. A fuzzy set in X is called a fuzzy point if and only
if it takes the value 0 for all y ∈ X except one, say, x ∈ X. If its value
at x is α (0 < α ≤ 1), we denote this fuzzy point by xα, where the
point x is called its support. The fuzzy point xα is said to be contained
in a fuzzy set A, denoted by xα ∈ A, if and only if α ≤ A(x).

Proposition 2.9. Let G be a group, let L be a t-fuzzy left ideal
of G, let R be a t-fuzzy right ideal of G, and let I be a t-fuzzy ideal.

(1) For every fuzzy point g1 in G, Lg1 is a t-fuzzy left ideal.
(2) For every fuzzy point g1 in G, g1R is a t-fuzzy right ideal.
(3) If G is an abelian group, g1I = Ig1 is a t-fuzzy ideal for every

fuzzy point g1 in G.
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Proof. (1) Lg1(pq) = sup
ab=pq

T (L(a), g1(b)) = T (L(pqg−1), g1(g)) =

L(pqg−1) ≥ L(qg−1) = T (L(qg−1), g1(g)) = sup
cd=q

T (L(c), g1(d)) =

Lg1(q). Thus Lg1 is a t-fuzzy left ideal.
(2) g1R(pq) = sup

ab=pq
T (g1(a), R(b)) = T (g1(g), R(g−1pq)) = R(g−1pq)

≥ R(g−1p) = T (g1(g), R(g−1p)) = sup
cd=p

T (g1(c), R(d)) = g1R(p). Thus

g1R is a t-fuzzy right ideal.
(3) Since G is an abelian group,

g1I(x) = sup
ab=x

T (g1(a), I(b)) = sup
ab=x

T (I(b), g1(a))

= sup
ba=x

T (I(b), g1(a)) = Ig1(x).

That is, g1I = Ig1. From (1), Ig1 is a t-fuzzy left ideal. From (2), g1I
is a t-fuzzy right ideal. Thus g1I = Ig1 is a t-fuzzy ideal. ¤

3. T-fuzzy subring and t-fuzzy ideals in a ring

Definition 3.1. Let X be a ring with respect to two binary opera-
tions + and · and let A be a fuzzy set in X. The fuzzy set A is called a
t-fuzzy subring of X if A is a t-fuzzy subgroup for + and A is a t-fuzzy
subgroupid for the operation · in X.

Proposition 3.2. Let X be a division ring and let A be a t-
fuzzy ring in X. Then A(e) ≥ T (A(x), A(x)) for x 6= u and A(u) ≥
T (A(x), A(x)). In particular, A(u) ≥ T (A(e), A(e)), where u is the ad-
ditive identity element of X and e is the multiplicative identity element
of X.

Proof. A(e) = A(x · x−1) ≥ T (A(x), A(x−1)) = T (A(x), A(x)) for
x 6= u. A(u) = A(x− x) ≥ T (A(x), A(−x)) = T (A(x), A(x)). ¤

In [5], Sessa shows the necessary and sufficient condition for a fuzzy
subset A in a ring X to be a t-fuzzy subring with the assumption of
A(u) = 1.
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Theorem 3.3. Let X be a ring and let A be a fuzzy set in X such
that A(u) = 1, where u is the additive identity element of X. Then
A is a t-fuzzy subring of X if and only if T (A(x), A(y)) ≤ min(A(x−
y), A(x · y)) for every x, y ∈ X.

Proof. See [5, Proposition 2.4]. ¤

We find the sufficient conditions for a fuzzy subset A in a division
ring X to be a t-fuzzy subring without the assumption of A(u) = 1.

Theorem 3.4. Let X be a division ring and let A be a fuzzy set in
X. If A(x) = A(e) for all x ∈ X with x 6= u and A(u) ≥ T (A(e), A(e)),
then A is a t-fuzzy subring of X, where u is the additive identity
element and e is the multiplicative identity element.

Proof. (i) If x 6= u, then −x 6= u, and hence A(x) = A(e) = A(−x).
If x = u, A(x) = A(−x). Thus A(x) = A(−x).
(ii) If x 6= y and x 6= u, A(x − y) = A(e) = A(x) = T (A(x), 1) ≥
T (A(x), A(y)). If x 6= y and y 6= u, A(x − y) = A(e) = A(y) =
T (1, A(y)) ≥ T (A(x), A(y)). If x = y 6= u, A(x − y) = A(u) ≥
T (A(e), A(e)) = T (A(x), A(y)). If x = y = u, A(x − y) = A(u) ≥
T (1, A(u)) ≥ T (A(u), A(u)) = T (A(x), A(y)). Thus A(x + y) = A(x−
(−y)) ≥ T (A(x), A(−y)) = T (A(x), A(y)).
(iii) If x = u, A(x · y) = A(u) ≥ T (A(u), 1) ≥ T (A(u), A(y)) =
T (A(x), A(y)). If y = u, A(x ·y) = A(u) ≥ T (1, A(u)) ≥ T (A(x), A(u))
= T (A(x), A(y)). If x 6= u and y 6= u, A(x · y) = A(e) = A(x) =
T (A(x), 1) ≥ T (A(x), A(y)). Thus A(x · y) ≥ T (A(x), A(y)).
From (i), (ii), and (iii), A is a t-fuzzy subring. ¤

Definition 3.5. Let X be a ring and let A be a fuzzy set in X.
The fuzzy set A is a t-fuzzy left (or right) ideal of X if A is a t-fuzzy
subring of X and A(x·y) ≥ A(y) (or A(x·y) ≥ A(x)) for every x, y ∈ X.
The fuzzy set A is a t-fuzzy ideal if A is a t-fuzzy subring of X and
A(x · y) ≥ max(A(x), A(y)) for every x, y ∈ X.

Liu([3]) showed that a fuzzy subset A of a skew field X is a fuzzy
ideal under the operation of minimum iff A(x) = A(e) ≤ A(u) for all
x ∈ X such that x 6= u, where u is the additive identity element and e
is the multiplicative identity element. We generalize this using t-norm
operation in the following theorem.
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Theorem 3.6. Let X be a division ring and let A be a fuzzy set
in X. Then A is a t-fuzzy ideal of X if and only if A(u) ≥ A(y) for
all y ∈ X and A(x) = A(e) for all x ∈ X with x 6= u, where u is the
additive identity element and e is the multiplicative identity element.

Proof. Suppose A is a t-fuzzy ideal. If y 6= u, then u · y = u,
and hence A(u) = A(u · y) ≥ A(y). Since X is a division ring, A(x) =
A(x·e) ≥ A(e) = A(x·x−1) ≥ A(x) for x ∈ X−{u}. Thus A(x) = A(e)
for all x ∈ X − {u}.

Suppose A(u) ≥ A(x) and A(x) = A(e) for all x ∈ X with x 6= u.
(i) If x 6= y and x 6= u, then A(x − y) = A(e) = A(x) = T (A(x), 1) ≥
T (A(x), A(y)). If x 6= y and y 6= u, then A(x − y) = A(e) = A(y) =
T (1, A(y)) ≥ T (A(x), A(y)). If x = y 6= u, then A(x − y) = A(u) ≥
A(x) = T (A(x), 1) ≥ T (A(x), A(y)). If x = y = u, then A(x − y) =
A(u) = T (A(u), 1) ≥ T (A(u), A(u)) ≥ T (A(x), A(y)). Thus A(x+y) =
A(x− (−y)) ≥ T (A(x), A(−y)) = T (A(x), A(y)).
(ii) If x = u and y 6= u, then A(x · y) = A(u) ≥ T (A(u), 1) ≥
T (A(u), A(e)) = T (A(x), A(y)). If y = u and x 6= u, then A(x · y) =
A(u) ≥ T (1, A(u)) ≥ T (A(e), A(u)) = T (A(x), A(y)). If x = u
and y = u, then A(x · y) = A(u) = T (1, A(u)) ≥ T (A(u), A(u)) =
T (A(x), A(y)). If x 6= u and y 6= u, then A(x · y) = A(e) = A(x) =
T (A(x), 1) ≥ T (A(x), A(y)). Thus A(x · y) ≥ T (A(x), A(y)).
(iii) If x 6= u, then −x 6= u, and hence A(x) = A(e) = A(−x) for
x 6= u. If x = u, then x = u = −x, and hence A(x) = A(−x). Thus
A(−x) = A(x).
(iv) If x · y 6= u, then x 6= u and y 6= u, and hence A(x · y) = A(e) =
A(x) = A(y). If x · y = u and x = y = u, then A(x · y) = A(x) = A(y).
If x · y = u, x = u, and y 6= u, then A(x · y) = A(u) = A(x) ≥ A(y).
If x · y = u, x 6= u, and y = u, then A(x · y) = A(u) = A(y) ≥ A(x).
Thus A(x · y) ≥ A(x) and A(x · y) ≥ A(y).
From (i), (ii), (iii), and (iv), A is a t-fuzzy ideal of X. ¤
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