FUZZY IDEALS AND FUZZY SUBRINGS UNDER TRIANGULAR NORMS

INHEUNG CHON

Abstract. We develop some basic properties of t-fuzzy ideals in a monoid or a group and find the sufficient conditions for a fuzzy set in a division ring to be a t-fuzzy subring and the necessary and sufficient conditions for a fuzzy set in a division ring to be a t-fuzzy ideal.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh ([8]). Rosenfeld ([4]) used this concept to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts based on the Rosenfeld’s fuzzy groups were developed. Anthony and Sherwood ([1]) redefined fuzzy groups in terms of t-norm which replaced the minimum operation of Rosenfeld’s definition. Some properties of these redefined fuzzy groups, which we call t-fuzzy groups in this paper, have been developed by Sherwood ([6]) and Sidky and Mishref ([7]). Sessa ([5]) defined fuzzy ideals with respect to the triangular norms, which we call t-fuzzy ideals in this paper, and developed their properties. As a continuation of these studies, we characterize some basic properties of t-fuzzy ideals and t-fuzzy subrings.

In the section 2 we develop some basic properties of t-fuzzy ideals in a monoid or a group. In the section 3 we find the sufficient conditions for a fuzzy set A in a division ring X to be a t-fuzzy subring without the assumption of $A(u) = 1$, where u is the additive identity element in X, and find the necessary and sufficient conditions for a fuzzy set in a division ring to be a t-fuzzy ideal without the assumption of $A(u) = 1$.

Received July 29, 2002.

2000 Mathematics Subject Classification: 20N25.

Key words and phrases: t-fuzzy subring, t-fuzzy ideal.

This paper was supported by the Natural Science Research Institute of Seoul Women’s University, 2001
2. t-fuzzy ideals in a group or a monoid

DEFINITION 2.1. A function B from a set X to the closed unit interval $[0, 1]$ in \mathbb{R} is called a fuzzy set in X. For every $x \in B$, $B(x)$ is called a membership grade of x in B.

Anthony and Sherwood ([1]) generalized the definition of a fuzzy groupoid by Rosenfeld ([4]), that is, they replace the stronger condition imposed by the minimum operation with a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$, called a triangular norm, and they developed some properties of fuzzy groupoids and fuzzy groups.

DEFINITION 2.2. A t-norm is a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying, for each p, q, r, s in $[0, 1]$,

1. $T(0, p) = 0$, $T(p, 1) = p$
2. $T(p, q) \leq T(r, s)$ if $p \leq r$ and $q \leq s$
3. $T(p, q) = T(q, p)$
4. $T(p, T(q, r)) = T(T(p, q), r))$

DEFINITION 2.3. Let S be a groupoid and T be a t-norm. A function $A : S \rightarrow [0, 1]$ is a t-fuzzy groupoid in S if and only if for every x, y in S, $A(xy) \geq T(A(x), A(y))$. If X is a group, a fuzzy groupoid G is a t-fuzzy group in X if and only if for each $x \in X$, $G(x^{-1}) = G(x)$.

For fuzzy sets U, V in a set X, UV has been defined in most articles by

$$(UV)(x) = \begin{cases} \sup_{ab=x} \min(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$

The following definition by Sessa ([5]) generalizes the above sup-min operation.

DEFINITION 2.4. Let X be a set and let U, V be two fuzzy sets in X. UV is defined by

$$(UV)(x) = \begin{cases} \sup_{ab=x} T(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$
Proposition 2.5. Let X be a set and let $U, V,$ and W be fuzzy sets in X. If X is associative, then $(UV)W = U(VW)$.

Proof. See Proposition 8 in [2]. □

Definition 2.6. Let S be a semigroup and let A, B, C be fuzzy sets in S. The fuzzy set A is a t-fuzzy left ideal if and only if $A(xy) \geq A(y)$. The fuzzy set B is called a t-fuzzy right ideal if and only if $B(xy) \geq B(x)$. The fuzzy set C is a t-fuzzy ideal if and only if $C(xy) \geq \max(C(x), C(y))$.

Proposition 2.7. Let B be a fuzzy subset in a monoid S. Then

1. SB (or BS) is a t-fuzzy left (or right) ideal of S.
2. SBS is a t-fuzzy ideal of S.

Proof.

1. Since S is a monoid, $SS = S$. From Proposition 2.5, $(SS)B = S(SB)$ and $B(SS) = (BS)S$. Since $S(x) = 1$, $SB(xy) = (SS)(xy) = (S(SB))(xy) \geq T(S(x), (SB)(y)) = (SB)(y)$. Since $S(y) = 1$, $BS(xy) = (B(SS))(xy) = (BS)S(xy) \geq T((BS)(x), S(y)) = BS(x)$.

2. Since S is a monoid, $SS = S$. From Proposition 2.5, $(SS)BS = S(SBS)$ and $SB(SS) = (SBS)S$. Thus $SBS(xy) = ((SS)BS)(xy) = (S(SBS))(xy) \geq T(S(x), (SBS)(y)) = (SBS)(y)$ and $SBS(xy) = (SBS)S(xy) \geq T(SBS(x), S(y)) = (SBS)(x)$. □

Definition 2.8. A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is α ($0 < \alpha \leq 1$), we denote this fuzzy point by x_α, where the point x is called its support. The fuzzy point x_α is said to be contained in a fuzzy set A, denoted by $x_\alpha \in A$, if and only if $\alpha \leq A(x)$.

Proposition 2.9. Let G be a group, let L be a t-fuzzy left ideal of G, let R be a t-fuzzy right ideal of G, and let I be a t-fuzzy ideal.

1. For every fuzzy point g_1 in G, Lg_1 is a t-fuzzy left ideal.
2. For every fuzzy point g_1 in G, g_1R is a t-fuzzy right ideal.
3. If G is an abelian group, $g_1I = Ig_1$ is a t-fuzzy ideal for every fuzzy point g_1 in G.

Proof. (1) \(Lg_1(pq) = \sup_{ab=pq} T(L(a), g_1(b)) = T(L(pqg^{-1}), g_1(g)) = L(pqg^{-1}) \geq L(qg^{-1}) = T(L(qg^{-1}), g_1(g)) = \sup_{cd=q} T(L(c), g_1(d)) = Lg_1(q) \). Thus \(Lg_1 \) is a t-fuzzy left ideal.

(2) \(g_1R(pq) = \sup_{ab=pq} T(g_1(a), R(b)) = T(g_1(g), R(g^{-1}pq)) = R(g^{-1}pq) \geq R(g^{-1}p) = T(g_1(g), R(g^{-1}p)) = \sup_{cd=p} T(g_1(c), R(d)) = g_1R(p) \). Thus \(g_1R \) is a t-fuzzy right ideal.

(3) Since \(G \) is an abelian group,

\[
g_1I(x) = \sup_{ab=x} T(g_1(a), I(b)) = \sup_{ab=x} T(I(b), g_1(a)) = \sup_{ba=x} T(I(b), g_1(a)) = Ig_1(x).
\]

That is, \(g_1I = Ig_1 \). From (1), \(Ig_1 \) is a t-fuzzy left ideal. From (2), \(g_1I \) is a t-fuzzy right ideal. Thus \(g_1I = Ig_1 \) is a t-fuzzy ideal. \(\square \)

3. T-fuzzy subring and t-fuzzy ideals in a ring

Definition 3.1. Let \(X \) be a ring with respect to two binary operations + and \(\cdot \) and let \(A \) be a fuzzy set in \(X \). The fuzzy set \(A \) is called a t-fuzzy subring of \(X \) if \(A \) is a t-fuzzy subgroup for + and \(A \) is a t-fuzzy subgroup for the operation \(\cdot \) in \(X \).

Proposition 3.2. Let \(X \) be a division ring and let \(A \) be a t-fuzzy ring in \(X \). Then \(A(e) \geq T(A(x), A(x)) \) for \(x \neq u \) and \(A(u) \geq T(A(x), A(x)) \). In particular, \(A(u) \geq T(A(e), A(e)) \), where \(u \) is the additive identity element of \(X \) and \(e \) is the multiplicative identity element of \(X \).

Proof. \(A(e) = A(x \cdot x^{-1}) \geq T(A(x), A(x^{-1})) = T(A(x), A(x)) \) for \(x \neq u \). \(A(u) = A(x - x) \geq T(A(x), A(-x)) = T(A(x), A(x)) \). \(\square \)

In [5], Sessa shows the necessary and sufficient condition for a fuzzy subset \(A \) in a ring \(X \) to be a t-fuzzy subring with the assumption of \(A(u) = 1 \).
Theorem 3.3. Let X be a ring and let A be a fuzzy set in X such that $A(u) = 1$, where u is the additive identity element of X. Then A is a t-fuzzy subring of X if and only if $T(A(x), A(y)) \leq \min(A(x - y), A(x \cdot y))$ for every $x, y \in X$.

Proof. See [5, Proposition 2.4].

We find the sufficient conditions for a fuzzy subset A in a division ring X to be a t-fuzzy subring without the assumption of $A(u) = 1$.

Theorem 3.4. Let X be a division ring and let A be a fuzzy set in X. If $A(x) = A(e)$ for all $x \in X$ with $x \neq u$ and $A(u) \geq T(A(e), A(e))$, then A is a t-fuzzy subring of X, where u is the additive identity element and e is the multiplicative identity element.

Proof. (i) If $x \neq u$, then $-x \neq u$, and hence $A(x) = A(e) = A(-x)$. If $x = u$, $A(x) = A(-x)$. Thus $A(x) = A(-x)$.

(ii) If $x \neq y$ and $x \neq u$, $A(x - y) = A(e) = A(x) = T(A(x), 1) \geq T(A(x), A(y))$. If $x \neq y$ and $y \neq u$, $A(x - y) = A(e) = T(1, A(y)) \geq T(A(x), A(y))$. If $x = y \neq u$, $A(x - y) = A(u) \geq T(A(e), A(e)) = T(A(x), A(y))$. If $x = y$, $A(x - y) = A(u) \geq T(1, A(u)) \geq T(A(u), A(u)) = T(A(x), A(y))$. Thus $A(x + y) = A(x - (-y)) \geq T(A(x), A(-y)) = T(A(x), A(y))$.

(iii) If $x = u$, $A(x \cdot y) = A(u) \geq T(A(u), 1) \geq T(1, A(u)) = T(A(x), A(y))$. If $y = u$, $A(x \cdot y) = A(u) \geq T(1, A(u)) \geq T(A(x), A(u)) = T(A(x), A(y))$. If $x \neq u$ and $y \neq u$, $A(x \cdot y) = A(e) = A(x) = T(A(x), 1) \geq T(A(x), A(y))$. Thus $A(x \cdot y) \geq T(A(x), A(y))$.

From (i), (ii), and (iii), A is a t-fuzzy subring.

Definition 3.5. Let X be a ring and let A be a fuzzy set in X. The fuzzy set A is a t-fuzzy left (or right) ideal of X if A is a t-fuzzy subring of X and $A(x - y) \geq A(y)$ (or $A(x - y) \geq A(x)$) for every $x, y \in X$. The fuzzy set A is a t-fuzzy ideal if A is a t-fuzzy subring of X and $A(x \cdot y) \geq \max(A(x), A(y))$ for every $x, y \in X$.

Liu[3] showed that a fuzzy subset A of a skew field X is a fuzzy ideal under the operation of minimum if $A(x) = A(e) \leq A(u)$ for all $x \in X$ such that $x \neq u$, where u is the additive identity element and e is the multiplicative identity element. We generalize this using t-norm operation in the following theorem.
Theorem 3.6. Let X be a division ring and let A be a fuzzy set in X. Then A is a t-fuzzy ideal of X if and only if $A(u) \geq A(y)$ for all $y \in X$ and $A(x) = A(e)$ for all $x \in X$ with $x \neq u$, where u is the additive identity element and e is the multiplicative identity element.

Proof. Suppose A is a t-fuzzy ideal. If $y \neq u$, then $u \cdot y = u$, and hence $A(u) = A(u \cdot y) \geq A(y)$. Since X is a division ring, $A(x) = A(x \cdot e) \geq A(e) = A(x \cdot x^{-1}) \geq A(x)$ for $x \in X - \{u\}$. Thus $A(x) = A(e)$ for all $x \in X - \{u\}$.

Suppose $A(u) \geq A(x)$ and $A(x) = A(e)$ for all $x \in X$ with $x \neq u$.

(i) If $x \neq y$ and $x \neq u$, then $A(x - y) = A(e) = A(x) = T(A(x), 1) \geq T(A(x), A(y))$. If $x \neq y$ and $y \neq u$, then $A(x - y) = A(e) = A(y) = T(1, A(y)) \geq T(A(x), A(y))$. If $x = y \neq u$, then $A(x - y) = A(u) = T(A(u), 1) \geq T(A(u), A(u)) \geq T(A(x), A(y))$. If $x = y = u$, then $A(x - y) = A(u) = T(A(u), 1) \geq T(A(u), A(u)) \geq T(A(x), A(y))$. Thus $A(x + y) = A(x) = T(A(x), A(−y)) = T(A(x), A(y))$.

(ii) If $x = u$ and $y \neq u$, then $A(x \cdot y) = A(u) \geq T(A(u), 1) \geq T(A(u), A(e)) = T(A(x), A(y))$. If $y = u$ and $x \neq u$, then $A(x \cdot y) = A(u) \geq T(1, A(u)) \geq T(A(e), A(u)) = T(A(x), A(y))$. If $x = u$ and $y = u$, then $A(x \cdot y) = A(u) = T(1, A(u)) \geq T(A(u), A(u)) = T(A(x), A(y))$. If $x \neq u$ and $y \neq u$, then $A(x \cdot y) = A(e) = A(x) = T(A(x), 1) \geq T(A(x), A(y))$. Thus $A(x \cdot y) \geq T(A(x), A(y))$.

(iii) If $x \neq u$, then $−x \neq u$, and hence $A(x) = A(e) = A(−x)$ for $x \neq u$. If $x = u$, then $x = u = −x$, and hence $A(x) = A(−x)$. Thus $A(−x) = A(x)$.

(iv) If $x \cdot y \neq u$, then $x \neq u$ and $y \neq u$, and hence $A(x \cdot y) = A(e) = A(x) = A(y)$. If $x \cdot y = u$ and $x = y = u$, then $A(x \cdot y) = A(x) = A(y)$. If $x \cdot y = u$, $x \neq u$, and $y = u$, then $A(x \cdot y) = A(u) = A(y) \geq A(x)$. Thus $A(x \cdot y) \geq A(x)$ and $A(x \cdot y) \geq A(y)$.

From (i), (ii), (iii), and (iv), A is a t-fuzzy ideal of X. □

References

Department of Mathematics
Seoul Women’s University
Seoul 139-774, Korea