ON RIGHT(LEFT) DUO PO-SEMIGROUPS

S. K. LEE AND K. Y. PARK

Abstract. We investigate some properties on right(resp. left) duo po-semigroups.

1. Introduction

Kehayopulu([6]) prove that every ideal of an \(\mathcal{N} \)-class of an ordered semigroup does not contain proper prime ideals. As a consequence, each prime ideal of an ordered semigroup is decomposable into its \(\mathcal{N} \)-classes.

In this paper, we give the relation between the left(resp. right) filters and the prime left(resp. right) ideals. We define a semilattice congruence \(\mathcal{N}_l \)(resp. \(\mathcal{N}_r \)) generated by the left(resp. right) filter on a right(resp. left) duo po-semigroup and investigate some properties on the right(resp. left) duo po-semigroups. Also we prove that every left(resp. right) ideal of \(\mathcal{N}_l \)-class resp. \(\mathcal{N}_r \)-class of a right(resp. left) duo po-semigroup does not contain the proper prime left(resp. right) ideals. As a consequence, each prime left(resp. right) ideal of a right(resp. left) duo po-semigroup is decomposable into its \(\mathcal{N}_l \)-classes(resp. \(\mathcal{N}_r \)-classes).

A po-semigroup (: ordered semigroup) is an ordered set \(S \) at the same time a semigroup such that \(a \leq b \Rightarrow xa \leq xb \) and \(ax \leq bx \) for all \(x \in S \).

Let \(S \) be a po-semigroup. A nonempty subset \(A \) of \(S \) is called a left(resp. right) ideal of \(S \) if (1) \(SA \subseteq A \)(resp. \(SA \subseteq A \)), (2) \(a \in A \) and \(b \leq a \) for \(b \in S \) \(\Rightarrow b \in A \([3,5]\)) \(A \) is called an ideal of \(S \) if it is a left and right ideal of \(S \).

Received July 14, 2003.
2000 Mathematics Subject Classification: 03G25, 06F35.
Key words and phrases: po-semigroup, ideal, left(right) ideal, right(left) duo, prime, prime left(right) ideal, left(right) filter, left(right) congruence, congruence, semilattice congruence.
A po-semigroup S is said to be right (resp. left) duo if every right (resp. left) ideal is a left (resp. right) ideal ([4,5]).

A non-empty subset T of a po-semigroup S is said to be prime if $AB \subseteq T \implies A \subseteq T$ or $B \subseteq T$ for subsets A, B of S ([8]). Equivalent Definition: For elements a, b in a subset T if $ab \in T \Rightarrow a \in T$ or $b \in T$. T is called a prime left (resp. right) ideal if T is prime as a left (resp. right) ideal ([2]).

A non-empty subsemigroup F of a po-semigroup S is called a left (resp. right) filter of S if $ab \in F$ for $a, b \in S \implies b \in F$ (resp. $a \in F$) if F is a left and right filter ([2,4,5]).

An equivalence relation σ on S is called a left congruence (resp. right congruence) on S if $(a, b) \in \sigma \implies (ac, bc) \in \sigma$ (resp. $(ca, cb) \in \sigma$) for all $c \in S$. An equivalence relation σ on S is called a congruence if it is a left and right congruence. A relation σ is called a semilattice congruence on S if σ is a congruence such that $(x^2, x) \in \sigma$ and $(xy, yx) \in \sigma([1,2,4])$.

Notation. For a semilattice congruence σ, $(z)_{\sigma}$ is a class of the semilattice congruence σ containing an element z in a po-semigroup S.

2. Main Results.

Lemma ([9]). Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:
1) F is a left (resp. right) filter of S.
2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime left (resp. right) ideal of S.

From Lemma, we get the following corollary.

Corollary 1([2]). Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:
1) F is a filter of S.
2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime ideal of S.

Proposition 1. A po-semigroup S does not contain proper left (resp. right) filters if and only if S does not contain proper prime left (resp. right) ideals.

Proof. \Rightarrow. Assume that S contains a proper prime left ideal L of S. Then $\emptyset \neq S \setminus L \subseteq S$. Since $S \setminus (S \setminus L) = L$, we note that $S \setminus (S \setminus L)$
is a prime left ideal of S. By Lemma 1, $S \setminus L$ is a proper left filter of S. It is impossible. Hence S does not contain proper prime left ideals.

\leftarrow. Suppose that F is a proper left filter of S. Then $S \setminus F \neq \emptyset$. By Lemma 1, $S \setminus F$ is a proper prime left ideal of S. It is impossible. Hence S does not contain proper prime left filters.

By Proposition 1, we have the following corollary.

Corollary 2 ([6, Remark 2]). A po-semigroup S does not contain proper filters if and only if S does not contain proper prime ideals.

Now we define a relation “N_i” on a po-semigroup S as follows:

$$N_i := \{(x, y) | N_i(x) = N_i(y)\}, \quad N_r := \{(x, y) | N_r(x) = N_r(y)\}$$

where $N_i(x)$ (resp. $N_r(x)$) is the left (resp. right) filter of S generated by $x \in S$.

Proposition 2. N_i (resp. N_r) is a semilattice congruence on a right (resp. left) duo po-semigroup S.

Proof. It is easy to check that N_i is an equivalence relation on S.

Let $(x, y) \in N_i$. Then $N_i(x) = N_i(y)$. Since $xz \in N_i(xz)$ for all $z \in S$ and $N_i(xz)$ is a left filter, we get $x \in N_i(xz)$ and $z \in N_i(xz)$. Thus $N_i(x) \subseteq N_i(xz)$ and so $y \in N_i(y) = N_i(x) \subseteq N_i(xz)$. Since $y, z \in N_i(xz)$ and $N_i(xz)$ is a subsemigroup of S, we get $yz \in N_i(xz)$. Therefore $N_i(yz) \subseteq N_i(xz)$. By symmetry, we get $N_i(xz) \subseteq N_i(yz)$. Hence $N_i(xz) = N_i(yz)$. Therefore N_i is a right congruence.

Now we shall show that $(x^2, x) \in N_i$. Let $x \in S$. Since $x^2 \in N_i(x^2)$ and $N_i(x^2)$ is a left filter, we get $x \in N_i(x^2)$. Thus $N_i(x) \subseteq N_i(x^2)$. Since $x \in N_i(x)$ and $N_i(x)$ is a subsemigroup of S, we get $x^2 \in N_i(x)$. Hence $N_i(x^2) \subseteq N_i(x)$. Therefore $N_i(x^2) = N_i(x)$, and so $(x^2, x) \in N_i$.

Next we shall show that $(xy, yx) \in N_i$. Let $x, y \in S$. Since $xy \in N_i(xy)$ and $N_i(xy)$ is a left filter, we have $x \in N_i(xy)$. Suppose that $y \notin N_i(xy)$. Then $y \in S \setminus N_i(xy)$. Since $S \setminus N_i(xy)$ is a prime right ideal and S is a right duo, $xy \in S(S \setminus N_i(xy)) \subseteq S \setminus N_i(xy)$. It is impossible. Thus $y \in N_i(xy)$. Since $N_i(xy)$ is a filter, $yx \in N_i(xy)$. Thus $N_i(yx) \subseteq N_i(xy)$. By symmetry, $N_i(xy) \subseteq N_i(yx)$. Therefore $N_i(xy) = N_i(yx)$ and so $(xy, yx) \in N_i$.

On right(left) duo po-semigroups
Finally, we shall show that \mathcal{N}_i is a left congruence. Let $(x, y) \in \mathcal{N}_i$, and $z \in S$. Then $\mathcal{N}_i(xz) = \mathcal{N}_i(xz) = \mathcal{N}_i(yz) = \mathcal{N}_i(zy)$. Therefore \mathcal{N}_i is a left congruence. It follows that \mathcal{N}_i is a semilattice congruence.

Proposition 3. Let S be a po-semigroup. If F is a left filter of S and $F \cap (z)_{\mathcal{N}_i} \neq \emptyset$ for $z \in S$, then $(z)_{\mathcal{N}_i} \subseteq F$.

Proof. Assume that F is a left filter of S and $a \in F \cap (z)_{\mathcal{N}_i}$ for $z \in S$. If $y \in (z)_{\mathcal{N}_i}$ then $(y)_{\mathcal{N}_i} = (z)_{\mathcal{N}_i} = (a)_{\mathcal{N}_i}$. Thus $(y, a) \in \mathcal{N}_i$, and so $\mathcal{N}_i(y) = \mathcal{N}_i(a)$. Since F is a left filter of S and $a \in F$, we have $\mathcal{N}_i(a) \subseteq F$. Thus $y \in \mathcal{N}_i(y) = \mathcal{N}_i(a) \subseteq F$. Hence $(z)_{\mathcal{N}_i} \subseteq F$. □

Proposition 4. For a po-semigroup S, $a \leq b$ implies $(a, ba) \in \mathcal{N}_i$ and $(a, ab) \in \mathcal{N}_r$.

Proof. Suppose that $a \leq b$. Since $a \in N_i(a)$ and $N_i(a)$ is a left filter, we get $b \in N_i(a)$. Thus $ba \in N_i(a)$, and so $N_i(ba) \subseteq N_i(a)$. Since $ba \in N_i(ba)$ and $N_i(ba)$ is a left filter, we have $a \in N_i(ba)$. Thus $N_i(a) \subseteq N_i(ba)$. Hence $N_i(a) = N_i(ba)$, and so $(a, ba) \in \mathcal{N}_i$.

By symmetry, we can prove that $(a, ab) \in \mathcal{N}_r$. □

Proposition 5. Let S be a right duo po-semigroup. If L is a left ideal of $(z)_{\mathcal{N}_i}$ for $z \in S$ then L does not contain proper prime left ideals.

Proof. From Proposition 1, it is sufficient to prove that L does not contain proper left filters (of L). Let F be a left filter of L and $a \in F$. Now we define $T := \{x \in S \mid a^2x \in F\}$. Then T is a nonempty set, since $a^2a = a^3 \in F$.

Now we show that $F = T \cap L$. If $y \in F$, then $a^2y \in F$. Thus $y \in T$. Since F is a left filter of L, $F \subseteq L$. Hence $y \in T \cap L$, and so $F \subseteq T \cap L$. Conversely, if $y \in T \cap L$, then $a^2y \in F$. Since F is a left filter of L, we get $y \in F$. Therefore $F = T \cap L$.

Next we show that T is a left filter of L. If $x \in T$ and $y \in T$, then $a^2x, a^2y \in F$. Since F is a left filter, we have $x, y \in F$. Since $a \in F$, $a^2xy \in F$. Thus $xy \in T$. If $xy \in T$ for $x, y \in L$, then $(a^2x)y = a^2(xy) \in F$. Since F is a left filter of L, we get $y \in F$. If $x \in T$ and $x \leq y$ for $y \in L$, then $a^2x \in F$. Since $x \leq y$, we get $a^2x \leq a^2y$. Since F is a left filter, $a^2y \in F$. Thus $y \in T$. Therefore T is a left filter of L.
We note that \(a \in F = T \cap L \subseteq L \subseteq (z)_{N_t} \), and so \(T \cap (z)_{N_t} \neq \emptyset \). Since \(T \) is a left filter of \(L \), we have \((z)_{N_t} \subseteq T \) by Proposition 3. Thus \(L = (z)_{N_t} \cap L \subseteq T \cap L = F \subseteq L \), and so \(F = L \). Hence \(L \) does not contain proper left filters (of \(L \)). Therefore by Proposition 1, \(L \) does not contain proper prime right ideals. \(\square \)

Proposition 6. Let \(S \) be a right duo po-semigroup and \(L \) a prime left ideal of \(S \). Then \(L = \cup \{(x)_{N_t} \mid x \in L\} \).

Proof. Let \(t \in (x)_{N_t} \) for some \(x \in L \). Since \((x)_{N_t} \) is a left ideal of \((x)_{N} \), \((x)_{N_t} \) does not contain proper prime left ideals by Proposition 5. If we prove that \((x)_{N_t} \cap L \) is a prime left ideal of \((x)_{N_t} \) then \((x)_{N_t} \cap L = (x)_{N_t} \).

We first show that \((x)_{N_t} \cap L \) is a left ideal of \((x)_{N_t} \). We note that \((x)_{N_t} \cap L \neq \emptyset \) since \(x \in (x)_{N_t} \cap L \). And \((x)_{N_t}((x)_{N_t} \cap L) = (x)_{N_t}^2 \cap (x)_{N_t}L \subseteq (x)_{N_t} \cap SL \subseteq (x)_{N_t} \cap L \). Let \(a \in (x)_{N_t} \cap L \) and \(b \leq a \) for \(b \in (x)_{N_t} \). Since \(L \) is a left ideal of \(S \), \(b \) is contained in \(L \). Thus \(b \in (x)_{N_t} \cap L \). Hence \((x)_{N_t} \cap L \) is a left ideal of \((x)_{N_t} \).

Finally, we show that \((x)_{N_t} \cap L \) is prime in \((x)_{N_t} \). Let \(yz \in (x)_{N_t} \cap L \) for \(y, z \in (x)_{N_t} \). Since \(yz \in L \) and \(L \) is a prime left ideal of \(S \), \(y \) is contained in \(L \) or \(z \) is contained in \(L \). Hence \(y \in (x)_{N_t} \cap L \) or \(z \in (x)_{N_t} \cap L \). Therefore \((x)_{N_t} \cap L \) is a prime left ideal of \((x)_{N_t} \).

It follows that

\[
L \subseteq \cup \{(x)_{N_t} \mid x \in L = \cup \{(x)_{N_t} \cap L \mid x \in L \} \subseteq L.
\]

Therefore \(L = \cup \{(x)_{N_t} \mid x \in L\} \). \(\square \)

B. by similar methods of Proposition 3, 5 and 6, we have the followings:

(1) If \(F \) is a right filter of a po-semigroup \(S \) and \(F \cap (z)_{N_r} \neq \emptyset \) for \(z \in S \), then \((z)_{N_r} \subseteq F \).

(2) If \(R \) is a right ideal of \((z)_{N_r} \) of left duo po-semigroups then \(R \) does not contain proper prime right ideals.

(3) If \(R \) is a prime right ideal of left duo po-semigroups, then

\[
R = \cup \{(x)_{N_r} \mid x \in R\}.
\]
3. Examples

Now we give an example of a left filter which is not a right filter in po-semigroups and an example of a left and right filter in a po-semigroup.

Example 1([7]). Let $S := \{a, b, c, d, e, f\}$ be a po-semigroup with Cayley table and Hasse diagram on S as follows:

<table>
<thead>
<tr>
<th>·</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

The set $A := \{e, f\}$ is a left filter, but not a right filter of S. Thus A is not a filter of S.

Example 2([8]). Let $S := \{a, b, c, d, e, f\}$ be a po-semigroup with Cayley table (Table 2) and Hasse diagram (Figure 2) on S as follows:

<table>
<thead>
<tr>
<th>·</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>f</td>
<td>f</td>
<td>e</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

Table 2

The set $B := \{a, d, e\}$ is a left and right filter of S, and so B is a filter of S.
References

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: sklee@nongae.gsnu.ac.kr