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PUSHCHINO DYNAMICS OF INTERNAL LAYER

Sang Sup Yum*

Abstract. The existence of solutions and the occurence of a Hopf

bifurcation for the free boundary problem with Pushchino dynamics

was shown in [3]. In this paper we shall show a Hopf bifurcation
occurs for the free boundary which is given by (1)

1. Introduction

In [3], they deal with the free boundary problem with Pushchino
dynamics. They showed the existence of solutions and the occurence
of a Hopf bifurcation. In this paper we shall show a Hopf bifurcation
occurs for the free boundary which is given by (1)(see in [2])

(1)



vt = vxx − (c1 + b)v + c1H(x− s(t)) + κ, (x, t) ∈ Ω− ∪ Ω+,

vx(0, t) = 0 = vx(1, t), t > 0,
v(x, 0) = v0(x), 0≤x≤1,

τ ds
dt = C(v(s(t), t)), t > 0,

s(0) = s0, 0 < s0 < 1,

where v(x, t) and vx(x, t) are assumed continuous in Ω = (0, 1)×(0,∞).
Here, H(·) is the Heaviside function, Ω− = {(x, t) ∈ Ω : 0 < x <

s(t)} and Ω+ = {(x, t) ∈ Ω : s(t) < x < 1}. The velocity of the
interface, C(v), in (1), which specifies the evolution of the interface s(t),
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is determined from the first equation in (1) using asymptotic techniques
(see in [1]). The function C(v) can be calculated explicitly as

C(v) =
2(c1 + c2)v − 2κ− (c1 − 2a)√

( c1−a+κ
c1+c2

− v)(v + a−κ
c1+c2

)

where 0 < a < 1/2 and c1, c2 and κ are positive constants. We assume
that the bistability, −c1 < b < c1(c2+a)

c1+a + κ.

2. The preliminary results

We recall the few things from [4]:
Let G(x, y) be Green’s function of the operator A := − d2

dx2 +(c1 +b)
and the domain of the operator A, D(A) = {v ∈ H2,2(0, 1) : vx(0) =
vx(1) = 0}. Define a function

g(x, s) :=
∫ 1

0

G(x, y)(c1H(y − s) + κ )dy

and γ(s) = g(s, s). We obtain the regular problem of (1) by using the
transformation u(x, t) = v(x, t)− g(x, s(t)):

(2)

{
d
dt (u, s) + Ã(u, s) =

1
τ
f(u, s)

(u, s)(0) = (u0, s0).

The operator Ã is a 2× 2 matrix whose the entry of the first row and
column is the operator A and the rest terms are all zero. The nonlinear
term f(u, s) is represented by

f(u, s) =
(
c1 C(u(s) + γ(s))G(x, s)

C(u(s) + γ(s))

)
.

We shall show the stationary solution of (1) (or (2)) exists and the
Hopf bifurcation occurs in the next section.
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3. The Hopf bifurcation

3.1 The stationary solutions
Let u(x, t) = u∗(x) and s(t) = s∗ and the time derivatives in (2)

equal to zero we obtain the stationary problem:

(3)
{
Au∗ = c1

τ C(u∗(s∗) + γ(s∗))G(·, s∗)
0 = 1

τ C(u∗(s∗) + γ(s∗))
.

For nonzero τ we obtain the following theorem:

Theorem 1. Assume that

(c1 − 2a)(c1 + b)− 2c1(c1 + c2)
2(c2 − b)

< κ <
(c1 − 2a)(c1 + b)

2(c2 − b)

then (2) has a unique stationary solution (u∗(x), s∗) = (0, s∗) for all
0 < τ <∞. The linearization of f at (0, s∗) is

Df(0, s∗)(û, ŝ) = 4(c1+c2)
2

c1
(û(s∗) + γ′(s∗) ŝ)

(
G(s∗, s∗), 1

)
.

The pair (0, s∗) corresponds to a unique steady state (v∗, s∗) of (1) for
τ 6= 0 with v∗(x) = g(x, s∗) .

Proof. From the (3), we easily see that u∗ = 0 and s∗ is a solution
of the equation γ(s) = c1−2a+2κ

2(c1+c2)
. Now, we define

Γ(s) := γ(s)− c1 − 2a+ 2κ
2(c1 + c2)

where γ(s) = c1
(c1+b) sinh

√
c1+b

cosh(
√
c1 + b s) sinh(

√
c1 + b (1− s)) +

κ
c1+b . Since Γ′(s) < 0 for s ∈ (0, 1), we need the following conditions
Γ(0) > 0 and Γ(1) < 0 and thus we obtain the above condition. The
formula for Df(0, s∗) follows from the differentiation and the relation
C ′( c1−2a+2κ

2(c1+c2)
) = 4(c1+c2)

2

c1
. Using Theorem 2.4 in [4], we obtain the

corresponding steady state (v∗, s∗) for (1). �
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3.2 A Hopf bifurcation

We now show that a Hopf bifurcation occurs as the new parameter
µ, µ = 1

τ
c1

4(c1+c2)2
varies. The linearized eigenvalue problem of (2) is

given by
(−Ã+ µDf(0, s∗))(u, s) = λ(u, s)

which is equivalent to

Au+ λu = µ c1 (u(s∗) + γ′(s∗)s)G(x, s∗)(4)

λs = µ(u(s∗) + γ′(s∗)s)(5)

We have the following lemma:

Lemma 2. For µ∗ ∈ R \ {0}, there is a C1-curve µ → (φ(µ), λ(µ))
of eigendata such that φ(µ∗) = φ∗ and λ(µ∗) = iβ where φ∗ is an

eigenfunction of −Ã+ µ∗Df(0, s∗) with eigenvalue iβ.

Proof. Let φ∗ = (ψ0, s0) ∈ D(A) × R. First, we see that s0 6= 0,
for otherwise, by (4), (A + iβ)ψ0 = iβ c1G(·, s∗)s0 = 0, which is not
possible because A is symmetric. So without loss of generality, let
s0 = 1. Then by (4) E(ψ0, iβ, µ

∗) = 0, where

E : D(A)C × C× R −→ XC × C ,

E(u, λ, µ) =
(

(A+ λ)u− µ c1 (u(s∗) + γ′(s∗))G(·, s∗)
λ− µ · (u(s∗) + γ′(s∗))

)
.

The equation E(u, λ, µ) = 0 is equivalent that λ is an eigenvalue
of −Ã + µDf(0, s∗) with eigenfunction (u, 1). We want to apply the
implicit function theorem to E, and therefore have to check that E is
in C1 and that

(6) D(u,λ)E(ψ0, iβ, µ0) : D(A)C × C → L2(0, 1)× C)

is an isomorphism. Now it is easy to see that E is in C1. The mapping

D(u,λ)E(ψ0, iβ, µ
∗)(û, λ̂)

=
(

(A+ iβ)û− µ∗c1û(s∗) ·G(·, s∗) + λ̂ψ0

−µ∗û(s∗) + λ̂

)
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is a compact perturbation of the mapping

(û, λ̂) 7−→
(
(A+ iβ)û, λ̂

)
which is invertible. As a consequence,D(u,λ)E(ψ0, iβ, µ

∗) is a Fredholm
operator of index 0. Thus to verify (6), it suffices to show that the
system

(7)

{
(A+ iβ)û+ λ̂ψ0 = µ∗û(s∗)c1G(·, s∗)
λ̂ = µ∗û(s∗)

necessarily implies that û = 0, λ̂ = 0. Thus let (û, λ̂) be a solution of
(7), and define ψ1 := ψ0 − c1G(·, s∗). Then

(8) (A+ iβ)û+ λ̂ψ1 = 0 .

Also, ψ1 is a solution to the equation

(A+ iβ)ψ1 = −c1δs∗(9)

iβ = µ∗ ·
(
γ
′
(s∗) + ψ1(s∗) + c1G(s∗, s∗)

)
(10)

where δs is the delta-distribution centered at s. From the equation (9),
we have

Im (ψ1(s∗)) = β

∫ 1

0

|ψ1|2 .

So, we have that

(11) µ∗
∫ 1

0

|ψ1|2 = c1 .

From (9), we can then calculate û(s∗) which, together with (8), (9)
and (11), implies that

λ̂

∫ 1

0

ψ2
1 = c1û(s∗) = c1λ̂/µ

∗ = λ̂

∫ 1

0

|ψ1|2 .
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As a result

λ̂

(∫ 1

0

|ψ1|2 − ψ2
1

)
= 0 ,

which implies λ̂ = 0, for otherwise Imψ1 = Imψ0 = 0, which is a
contradiction. So we conclude that λ̂ = 0. And so we have û = 0.

We have thus shown (6), and get a C1-curve µ 7→ (φ(µ), λ(µ)) of
eigendata such that φ(µ∗) = φ∗ and λ(µ∗) = iβ. �

Now we shall use the Fourier cosine transformation to show the
transverality condition and uniqueness of µ∗. If we use v(x, t) = u(x, t)
−c1G(x, s), the eigenvalue problem is obtained by

λv = vxx − (c1 + b)v − c1δs∗(12)

λ = µ
(
(v∗)′(s∗) + v(s∗)

)
(13)

If we take a Fourier cosine transformation in the equation (12), then
we have that

v(x) = −2c1
∞∑

k=0

cos kπs∗

(kπ)2 + c1 + b+ λ
cos kπx

Furthermore, by using Green’s function

(14) v(x) = −c1Gλ(x, s∗).

Now, we have the equation (13):

(15) µ
(
(v∗)′(s∗)− c1Gλ(s∗, s∗)

)
= λ

Here is the main theorem.

Theorem 3. For a given pure imaginary eigenvalue iβ, β 6= 0, there
exists a unique µ∗ such that (0, s∗, µ∗) is a Hopf point.
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Proof. We assume that β > 0 and let λ = iβ in (15), then the real
and imaginary parts are obtained by

µ Im
(
(−c1Gβ(s∗, s∗)

)
= β(16)

µ
(
(v∗)′(s∗) + Re(−c1Gβ(s∗, s∗))

)
= 0(17)

where Gβ is Green’s function of the operator A + iβ. If we know the
existence of β in (17), we may find the value of µ∗ corresponding β in
(16). Thus, we define

T (β) = (v∗)′(s∗) + Re(−c1Gβ(s∗, s∗)).

Then

T (0) = (v∗)′(s∗) + (−c1G(s∗, s∗))

=
1√

c1 + b sinh
√
c1 + b

(
1− cosh(

√
c1 + b(1− 2s∗))

)
< 0

and limβ→∞ T (β) = (v∗)′(s∗) > 0. Furthermore, T ′(β) > 0. Therefore
there is a unique β such that T (β) = 0. From this β, the µ can be
uniquely determined from (16).

Now we only need to show the transversality condition. Differentiate
with respect to µ in (15) then we have

λ′(µ)(1/µ+ c1G
′
λ(s∗, s∗)) =

λ

µ2
.

Evaluating at µ = µ∗ (note λ(µ∗) = iβ),

λ′(µ∗)
( 1
µ∗

+ c1G
′
β(s∗, s∗)) =

iβ

(µ∗)2
.

The real part of λ′(µ∗) is

Re(λ′(µ∗)) =
β

(µ∗)2D

(C + 1/µ∗)2 +D2
,
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where C + iD = c1G
′
β(s∗, s∗). We only need to examine the sign of D.

D = c1ImG
′
β(s∗, s∗) and

D = 4c1β
∞∑

k=1

(cos kπs∗)2(k2π2 + c1 + b)
((k2π2 + c1 + b)2 + β2)2

The transversality condition Reλ′(µ∗) > 0 is satisfied. �

Therefore, we have the following theorem for the Hopf bifurcation
of (1):

Theorem 4. Assume that

(c1 − 2a)(c1 + b)− 2c1(c1 + c2)
2(c2 − b)

< κ <
(c1 − 2a)(c1 + b)

2(c2 − b)

so that (1), respectively (2), has a unique stationary solution (0, s∗) ,
respectively (v∗, s∗), for all µ > 0. Then there exists a unique µ∗ > 0
such that the linearization −Ã + µ∗Df(0, s∗) has a purely imaginary
pair of eigenvalues. The point (0, s∗, µ∗) is then a Hopf point for (1)
and there exists a C1-curve of nontrivial periodic orbits for (1), (2),
respectively, bifurcating from (0, s∗, µ∗), (v∗, s∗, µ∗), respectively.
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