PUSHCHINO DYNAMICS OF INTERNAL LAYER

Sang Sup Yum*

Abstract. The existence of solutions and the occurence of a Hopf bifurcation for the free boundary problem with Pushchino dynamics was shown in [3]. In this paper we shall show a Hopf bifurcation occurs for the free boundary which is given by (1)

1. Introduction

In [3], they deal with the free boundary problem with Pushchino dynamics. They showed the existence of solutions and the occurence of a Hopf bifurcation. In this paper we shall show a Hopf bifurcation occurs for the free boundary which is given by (1)(see in [2])

$$
\left\{\begin{array}{l}
v_{t}=v_{x x}-\left(c_{1}+b\right) v+c_{1} H(x-s(t))+\kappa,(x, t) \in \Omega^{-} \cup \Omega^{+} \tag{1}\\
v_{x}(0, t)=0=v_{x}(1, t), \quad t>0 \\
v(x, 0)=v_{0}(x), \quad 0 \leq x \leq 1 \\
\tau \frac{d s}{d t}=C(v(s(t), t)), \quad t>0 \\
s(0)=s_{0}, \quad 0<s_{0}<1
\end{array}\right.
$$

where $v(x, t)$ and $v_{x}(x, t)$ are assumed continuous in $\Omega=(0,1) \times(0, \infty)$. Here, $H(\cdot)$ is the Heaviside function, $\Omega^{-}=\{(x, t) \in \Omega: 0<x<$ $s(t)\}$ and $\Omega^{+}=\{(x, t) \in \Omega: s(t)<x<1\}$. The velocity of the interface, $C(v)$, in (1), which specifies the evolution of the interface $s(t)$,

[^0]is determined from the first equation in (1) using asymptotic techniques (see in [1]). The function $C(v)$ can be calculated explicitly as
$$
C(v)=\frac{2\left(c_{1}+c_{2}\right) v-2 \kappa-\left(c_{1}-2 a\right)}{\sqrt{\left(\frac{c_{1}-a+\kappa}{c_{1}+c_{2}}-v\right)\left(v+\frac{a-\kappa}{c_{1}+c_{2}}\right)}}
$$
where $0<a<1 / 2$ and c_{1}, c_{2} and κ are positive constants. We assume that the bistability, $-c_{1}<b<\frac{c_{1}\left(c_{2}+a\right)}{c_{1}+a}+\kappa$.

2. The preliminary results

We recall the few things from [4]:
Let $G(x, y)$ be Green's function of the operator $A:=-\frac{d^{2}}{d x^{2}}+\left(c_{1}+b\right)$ and the domain of the operator $A, D(A)=\left\{v \in H^{2,2}(0,1): v_{x}(0)=\right.$ $\left.v_{x}(1)=0\right\}$. Define a function

$$
g(x, s):=\int_{0}^{1} G(x, y)\left(c_{1} H(y-s)+\kappa\right) d y
$$

and $\gamma(s)=g(s, s)$. We obtain the regular problem of (1) by using the transformation $u(x, t)=v(x, t)-g(x, s(t))$:

$$
\left\{\begin{array}{l}
\frac{d}{d t}(u, s)+\tilde{A}(u, s)=\frac{1}{\tau} f(u, s) \tag{2}\\
(u, s)(0)=\left(u_{0}, s_{0}\right) .
\end{array}\right.
$$

The operator \tilde{A} is a 2×2 matrix whose the entry of the first row and column is the operator A and the rest terms are all zero. The nonlinear term $f(u, s)$ is represented by

$$
f(u, s)=\binom{c_{1} C(u(s)+\gamma(s)) G(x, s)}{C(u(s)+\gamma(s))} .
$$

We shall show the stationary solution of (1) (or (2)) exists and the Hopf bifurcation occurs in the next section.

3. The Hopf bifurcation

3.1 The stationary solutions

Let $u(x, t)=u^{*}(x)$ and $s(t)=s^{*}$ and the time derivatives in (2) equal to zero we obtain the stationary problem:

$$
\left\{\begin{array}{ll}
A u^{*} & =\frac{c_{1}}{\tau} C\left(u^{*}\left(s^{*}\right)+\gamma\left(s^{*}\right)\right) G\left(\cdot, s^{*}\right) \tag{3}\\
0 & =\frac{1}{\tau} C\left(u^{*}\left(s^{*}\right)+\gamma\left(s^{*}\right)\right)
\end{array} .\right.
$$

For nonzero τ we obtain the following theorem:
Theorem 1. Assume that

$$
\frac{\left(c_{1}-2 a\right)\left(c_{1}+b\right)-2 c_{1}\left(c_{1}+c_{2}\right)}{2\left(c_{2}-b\right)}<\kappa<\frac{\left(c_{1}-2 a\right)\left(c_{1}+b\right)}{2\left(c_{2}-b\right)}
$$

then (2) has a unique stationary solution $\left(u^{*}(x), s^{*}\right)=\left(0, s^{*}\right)$ for all $0<\tau<\infty$. The linearization of f at $\left(0, s^{*}\right)$ is

$$
D f\left(0, s^{*}\right)(\hat{u}, \hat{s})=\frac{4\left(c_{1}+c_{2}\right)^{2}}{c_{1}}\left(\hat{u}\left(s^{*}\right)+\gamma^{\prime}\left(s^{*}\right) \hat{s}\right)\left(G\left(s^{*}, s^{*}\right), 1\right) .
$$

The pair $\left(0, s^{*}\right)$ corresponds to a unique steady state $\left(v^{*}, s^{*}\right)$ of (1) for $\tau \neq 0$ with $v^{*}(x)=g\left(x, s^{*}\right)$.

Proof. From the (3), we easily see that $u^{*}=0$ and s^{*} is a solution of the equation $\gamma(s)=\frac{c_{1}-2 a+2 \kappa}{2\left(c_{1}+c_{2}\right)}$. Now, we define

$$
\Gamma(s):=\gamma(s)-\frac{c_{1}-2 a+2 \kappa}{2\left(c_{1}+c_{2}\right)}
$$

where $\gamma(s)=\frac{c_{1}}{\left(c_{1}+b\right) \sinh \sqrt{c_{1}+b}} \cosh \left(\sqrt{c_{1}+b} s\right) \sinh \left(\sqrt{c_{1}+b}(1-s)\right)+$ $\frac{\kappa}{c_{1}+b}$. Since $\Gamma^{\prime}(s)<0$ for $s \in(0,1)$, we need the following conditions $\Gamma(0)>0$ and $\Gamma(1)<0$ and thus we obtain the above condition. The formula for $D f\left(0, s^{*}\right)$ follows from the differentiation and the relation $C^{\prime}\left(\frac{c_{1}-2 a+2 \kappa}{2\left(c_{1}+c_{2}\right)}\right)=\frac{4\left(c_{1}+c_{2}\right)^{2}}{c_{1}}$. Using Theorem 2.4 in [4], we obtain the corresponding steady state $\left(v^{*}, s^{*}\right)$ for (1).

3.2 A Hopf bifurcation

We now show that a Hopf bifurcation occurs as the new parameter $\mu, \mu=\frac{1}{\tau} \frac{c_{1}}{4\left(c_{1}+c_{2}\right)^{2}}$ varies. The linearized eigenvalue problem of (2) is given by

$$
\left(-\tilde{A}+\mu D f\left(0, s^{*}\right)\right)(u, s)=\lambda(u, s)
$$

which is equivalent to

$$
\begin{align*}
A u+\lambda u & =\mu c_{1}\left(u\left(s^{*}\right)+\gamma^{\prime}\left(s^{*}\right) s\right) G\left(x, s^{*}\right) \tag{4}\\
\lambda s & =\mu\left(u\left(s^{*}\right)+\gamma^{\prime}\left(s^{*}\right) s\right) \tag{5}
\end{align*}
$$

We have the following lemma:
Lemma 2. For $\mu^{*} \in \mathbb{R} \backslash\{0\}$, there is a C^{1}-curve $\mu \rightarrow(\phi(\mu), \lambda(\mu))$ of eigendata such that $\phi\left(\mu^{*}\right)=\phi^{*}$ and $\lambda\left(\mu^{*}\right)=i \beta$ where ϕ^{*} is an eigenfunction of $-\tilde{A}+\mu^{*} D f\left(0, s^{*}\right)$ with eigenvalue $i \beta$.

Proof. Let $\phi^{*}=\left(\psi_{0}, s_{0}\right) \in D(A) \times \mathbb{R}$. First, we see that $s_{0} \neq 0$, for otherwise, by (4), $(A+i \beta) \psi_{0}=i \beta c_{1} G\left(\cdot, s^{*}\right) s_{0}=0$, which is not possible because A is symmetric. So without loss of generality, let $s_{0}=1$. Then by (4) $E\left(\psi_{0}, i \beta, \mu^{*}\right)=0$, where

$$
\begin{aligned}
& E: D(A)_{\mathbb{C}} \times \mathbb{C} \times \mathbb{R} \longrightarrow X_{\mathbb{C}} \times \mathbb{C}, \\
& E(u, \lambda, \mu)=\binom{(A+\lambda) u-\mu c_{1}\left(u\left(s^{*}\right)+\gamma^{\prime}\left(s^{*}\right)\right) G\left(\cdot, s^{*}\right)}{\lambda-\mu \cdot\left(u\left(s^{*}\right)+\gamma^{\prime}\left(s^{*}\right)\right)} .
\end{aligned}
$$

The equation $E(u, \lambda, \mu)=0$ is equivalent that λ is an eigenvalue of $-\widetilde{A}+\mu D f\left(0, s^{*}\right)$ with eigenfunction $(u, 1)$. We want to apply the implicit function theorem to E, and therefore have to check that E is in C^{1} and that

$$
\begin{equation*}
\left.D_{(u, \lambda)} E\left(\psi_{0}, i \beta, \mu_{0}\right): D(A)_{\mathbb{C}} \times \mathbb{C} \rightarrow L^{2}(0,1) \times \mathbb{C}\right) \tag{6}
\end{equation*}
$$

is an isomorphism. Now it is easy to see that E is in C^{1}. The mapping

$$
\begin{aligned}
& D_{(u, \lambda)} E\left(\psi_{0}, i \beta, \mu^{*}\right)(\hat{u}, \hat{\lambda}) \\
& \quad=\binom{(A+i \beta) \hat{u}-\mu^{*} c_{1} \hat{u}\left(s^{*}\right) \cdot G\left(\cdot, s^{*}\right)+\hat{\lambda} \psi_{0}}{-\mu^{*} \hat{u}\left(s^{*}\right)+\hat{\lambda}}
\end{aligned}
$$

is a compact perturbation of the mapping

$$
(\hat{u}, \hat{\lambda}) \longmapsto((A+i \beta) \hat{u}, \hat{\lambda})
$$

which is invertible. As a consequence, $D_{(u, \lambda)} E\left(\psi_{0}, i \beta, \mu^{*}\right)$ is a Fredholm operator of index 0 . Thus to verify (6), it suffices to show that the system

$$
\left\{\begin{array}{l}
(A+i \beta) \hat{u}+\hat{\lambda} \psi_{0}=\mu^{*} \hat{u}\left(s^{*}\right) c_{1} G\left(\cdot, s^{*}\right) \tag{7}\\
\hat{\lambda}=\mu^{*} \hat{u}\left(s^{*}\right)
\end{array}\right.
$$

necessarily implies that $\hat{u}=0, \hat{\lambda}=0$. Thus let $(\hat{u}, \hat{\lambda})$ be a solution of (7), and define $\psi_{1}:=\psi_{0}-c_{1} G\left(\cdot, s^{*}\right)$. Then

$$
\begin{equation*}
(A+i \beta) \hat{u}+\hat{\lambda} \psi_{1}=0 \tag{8}
\end{equation*}
$$

Also, ψ_{1} is a solution to the equation

$$
\begin{align*}
& (A+i \beta) \psi_{1}=-c_{1} \delta_{s^{*}} \tag{9}\\
& i \beta=\mu^{*} \cdot\left(\gamma^{\prime}\left(s^{*}\right)+\psi_{1}\left(s^{*}\right)+c_{1} G\left(s^{*}, s^{*}\right)\right) \tag{10}
\end{align*}
$$

where δ_{s} is the delta-distribution centered at s. From the equation (9), we have

$$
\operatorname{Im}\left(\psi_{1}\left(s^{*}\right)\right)=\beta \int_{0}^{1}\left|\psi_{1}\right|^{2}
$$

So, we have that

$$
\begin{equation*}
\mu^{*} \int_{0}^{1}\left|\psi_{1}\right|^{2}=c_{1} \tag{11}
\end{equation*}
$$

From (9), we can then calculate $\hat{u}\left(s^{*}\right)$ which, together with (8), (9) and (11), implies that

$$
\hat{\lambda} \int_{0}^{1} \psi_{1}^{2}=c_{1} \hat{u}\left(s^{*}\right)=c_{1} \hat{\lambda} / \mu^{*}=\hat{\lambda} \int_{0}^{1}\left|\psi_{1}\right|^{2} .
$$

As a result

$$
\hat{\lambda}\left(\int_{0}^{1}\left|\psi_{1}\right|^{2}-\psi_{1}^{2}\right)=0
$$

which implies $\hat{\lambda}=0$, for otherwise $\operatorname{Im} \psi_{1}=\operatorname{Im} \psi_{0}=0$, which is a contradiction. So we conclude that $\hat{\lambda}=0$. And so we have $\hat{u}=0$.

We have thus shown (6), and get a C^{1}-curve $\mu \mapsto(\phi(\mu), \lambda(\mu))$ of eigendata such that $\phi\left(\mu^{*}\right)=\phi^{*}$ and $\lambda\left(\mu^{*}\right)=i \beta$.

Now we shall use the Fourier cosine transformation to show the transverality condition and uniqueness of μ^{*}. If we use $v(x, t)=u(x, t)$ $-c_{1} G(x, s)$, the eigenvalue problem is obtained by

$$
\begin{align*}
\lambda v & =v_{x x}-\left(c_{1}+b\right) v-c_{1} \delta_{s^{*}} \tag{12}\\
\lambda & =\mu\left(\left(v^{*}\right)^{\prime}\left(s^{*}\right)+v\left(s^{*}\right)\right) \tag{13}
\end{align*}
$$

If we take a Fourier cosine transformation in the equation (12), then we have that

$$
v(x)=-2 c_{1} \sum_{k=0}^{\infty} \frac{\cos k \pi s^{*}}{(k \pi)^{2}+c_{1}+b+\lambda} \cos k \pi x
$$

Furthermore, by using Green's function

$$
\begin{equation*}
v(x)=-c_{1} G_{\lambda}\left(x, s^{*}\right) . \tag{14}
\end{equation*}
$$

Now, we have the equation (13):

$$
\begin{equation*}
\mu\left(\left(v^{*}\right)^{\prime}\left(s^{*}\right)-c_{1} G_{\lambda}\left(s^{*}, s^{*}\right)\right)=\lambda \tag{15}
\end{equation*}
$$

Here is the main theorem.
Theorem 3. For a given pure imaginary eigenvalue $i \beta, \beta \neq 0$, there exists a unique μ^{*} such that $\left(0, s^{*}, \mu^{*}\right)$ is a Hopf point.

Proof. We assume that $\beta>0$ and let $\lambda=i \beta$ in (15), then the real and imaginary parts are obtained by

$$
\begin{align*}
& \mu \operatorname{Im}\left(\left(-c_{1} G_{\beta}\left(s^{*}, s^{*}\right)\right)=\beta\right. \tag{16}\\
& \mu\left(\left(v^{*}\right)^{\prime}\left(s^{*}\right)+\operatorname{Re}\left(-c_{1} G_{\beta}\left(s^{*}, s^{*}\right)\right)\right)=0 \tag{17}
\end{align*}
$$

where G_{β} is Green's function of the operator $A+i \beta$. If we know the existence of β in (17), we may find the value of μ^{*} corresponding β in (16). Thus, we define

$$
T(\beta)=\left(v^{*}\right)^{\prime}\left(s^{*}\right)+\operatorname{Re}\left(-c_{1} G_{\beta}\left(s^{*}, s^{*}\right)\right) .
$$

Then

$$
\begin{aligned}
T(0) & =\left(v^{*}\right)^{\prime}\left(s^{*}\right)+\left(-c_{1} G\left(s^{*}, s^{*}\right)\right) \\
& =\frac{1}{\sqrt{c_{1}+b} \sinh \sqrt{c_{1}+b}}\left(1-\cosh \left(\sqrt{c_{1}+b}\left(1-2 s^{*}\right)\right)\right) \\
& <0
\end{aligned}
$$

and $\lim _{\beta \rightarrow \infty} T(\beta)=\left(v^{*}\right)^{\prime}\left(s^{*}\right)>0$. Furthermore, $T^{\prime}(\beta)>0$. Therefore there is a unique β such that $T(\beta)=0$. From this β, the μ can be uniquely determined from (16).

Now we only need to show the transversality condition. Differentiate with respect to μ in (15) then we have

$$
\lambda^{\prime}(\mu)\left(1 / \mu+c_{1} G_{\lambda}^{\prime}\left(s^{*}, s^{*}\right)\right)=\frac{\lambda}{\mu^{2}} .
$$

Evaluating at $\mu=\mu^{*}\left(\right.$ note $\left.\lambda\left(\mu^{*}\right)=i \beta\right)$,

$$
\lambda^{\prime}\left(\mu^{*}\right)\left(\frac{1}{\mu^{*}}+c_{1} G_{\beta}^{\prime}\left(s^{*}, s^{*}\right)\right)=\frac{i \beta}{\left(\mu^{*}\right)^{2}} .
$$

The real part of $\lambda^{\prime}\left(\mu^{*}\right)$ is

$$
\operatorname{Re}\left(\lambda^{\prime}\left(\mu^{*}\right)\right)=\frac{\frac{\beta}{\left(\mu^{*}\right)^{2}} D}{\left(C+1 / \mu^{*}\right)^{2}+D^{2}},
$$

where $C+i D=c_{1} G_{\beta}^{\prime}\left(s^{*}, s^{*}\right)$. We only need to examine the sign of D. $D=\mathrm{c}_{1} \operatorname{Im} G_{\beta}^{\prime}\left(s^{*}, s^{*}\right)$ and

$$
D=4 c_{1} \beta \sum_{k=1}^{\infty} \frac{\left(\cos k \pi s^{*}\right)^{2}\left(k^{2} \pi^{2}+c_{1}+b\right)}{\left(\left(k^{2} \pi^{2}+c_{1}+b\right)^{2}+\beta^{2}\right)^{2}}
$$

The transversality condition $\operatorname{Re} \lambda^{\prime}\left(\mu^{*}\right)>0$ is satisfied.

Therefore, we have the following theorem for the Hopf bifurcation of (1):

Theorem 4. Assume that

$$
\frac{\left(c_{1}-2 a\right)\left(c_{1}+b\right)-2 c_{1}\left(c_{1}+c_{2}\right)}{2\left(c_{2}-b\right)}<\kappa<\frac{\left(c_{1}-2 a\right)\left(c_{1}+b\right)}{2\left(c_{2}-b\right)}
$$

so that (1), respectively (2), has a unique stationary solution ($0, s^{*}$), respectively $\left(v^{*}, s^{*}\right)$, for all $\mu>0$. Then there exists a unique $\mu^{*}>0$ such that the linearization $-\widetilde{A}+\mu^{*} D f\left(0, s^{*}\right)$ has a purely imaginary pair of eigenvalues. The point $\left(0, s^{*}, \mu^{*}\right)$ is then a Hopf point for (1) and there exists a C^{1}-curve of nontrivial periodic orbits for (1), (2), respectively, bifurcating from $\left(0, s^{*}, \mu^{*}\right),\left(v^{*}, s^{*}, \mu^{*}\right)$, respectively.

References

1. P. Fife, Current topics in reaction-diffusion systems, in Nonequilibrium Cooperative Phenomena in Physics and Related Fields, M. G. Velarde, ed. Plenum Press, New York (1984), 371-441.
2. P. Schuetz, M. Bode, H.-G. Purwins, Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities, Physica D 82 (1995) 382-397.
3. Y. M. Ham and B. I. Seung, The Hopf Bifurcation in a Parabolic Free Boundary Problem with Pushchino Dynamics, J. Korean Math. Soc. Vol 32 (1995), No.2, 237-250.
4. Y. M. Ham, The well posedness in a parabolic double free boundary problem, J. Korean Math. Soc. Vol 32 (1995).

Department of Mathematics
Seoul City University
Seoul, 130-743 Korea

[^0]: Received November 10, 2003.
 2000 Mathematics Subject Classification: Primary 35R35, 35B32 ; Secondary $35 \mathrm{~B} 25,35 \mathrm{~K} 22,35 \mathrm{~K} 57,58 \mathrm{~F} 14,58 \mathrm{~F} 22$.

 Key words and phrases: Hopf bifurcation, Pushchino dynamics, Fredholm operator.
 *This paper was supported by research fund of the Univ. of Seoul, 2000.

