C_{2}^{3}-CONSTRUCTION ON $M_{n}(k)$

Youngkwon Song

Abstract

Let $\left(B, m_{B}, k\right)$ be a maximal commutative k-subalgebra of a matrix algebra $M_{n}(k)$. We will construct a maximal commutative k-subalgebra (R, m, k) of $M_{n+3}(k)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3 . Moreover, we will show a C_{i}-construction doesn't imply a C_{2}^{3}-construction for $i=1,2$.

1. Introduction

Let $\left(B, m_{B}, k\right)$ be a maximal commutative k-subalgebra of $M_{n}(k)$. Then, in [2], W.C. Brown introduced a way to construct a maximal commutative k-subalgebra from the algebra B of smaller dimension by one.

In this paper, we want to construct a maximal commutative subalgebra (R, m, k) of a matrix algebra $M_{n+3}(k)$ from a maximal commutative subalgebra B of $M_{n}(k)$. This construction is useful to embed a maximal commutative k-subalgebra of matrix algebra in a maximal commutative k-subalgebra of a larger size of matrix algebra. Also we can construct a maximal commutative k-subalgebra from a maximal commutative k subalgebra of smaller dimension by three. In other words, if there is a maximal commutative k-subalgebra of dimension s, then we can always construct a maximal commutative k-subalgebra of dimension $s+3$ by using this construction.

Moreover, we will show this construction is neither a C_{1}-construction nor a C_{2}-construction defined in [3].

Received December 15, 2003.
2000 Mathematics Subject Classification: 15A27, 15A33.
Key words and phrases: C_{2}^{3}-construction.
The present research has been conducted by the Research Grant of Kwangwoon University in 2002.

2. New construction

Let $\left(B, m_{B}, k\right)$ is a finite dimensional commutative k-algebra with identity and N a finitely generated faithful B-module. Then, $R=$ $B \oplus N^{\ell}$ is a maximal commutative k-subalgebra which is called a C_{1} construction.

The next theorem present an equivalent condition to be a C_{1}-construction and the proof can be found in [1].

Theorem 2.1. [1] Let (R, m, k) be a commutative k-algebra. Then, R is a C_{1}-construction if and only if there is an ideal I satisfying the following conditions:
(1) $A n n_{R}(I)=I$
(2) $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ splits as k-algebras.

The following corollary is obtained directly from Theorem 2.1.

Corollary 2.2. [1, 2] Let (R, m, k) be a commutative k-algebra. If $m^{2}=(0)$, then R is a C_{1}-construction.

Throughout this paper, the socle of an algebra R will be denoted by $\operatorname{Soc}(R)$.

Theorem 2.3. [2] Let $\left(B, m_{B}, k\right)$ be a finite dimensional commutative k-algebra with identity and N a finitely generated faithful B-module. Suppose $B \cong \operatorname{Hom}_{B}(N, N)$ via the regular representation. Then there exists an element $w \neq 0 \in \operatorname{Soc}(B)$ with $\operatorname{dim}_{k}(N w)=1$.

Let $\left(B, m_{B}, k\right)$ be a finite dimensional commutative k-algebra with identity. If $R \cong B[X] /\left(m_{B} X, X^{p}-w\right)$, for some $w \in \operatorname{Soc}(B)-\{0\}$ and a positive integer $p>1$, then we say the algebra R of this form a C_{2}-construction.

Here is an equivalent condition to be a C_{2}-construction and can be found in [3].

Theorem 2.4. [3] Let (R, m, k) be a commutative k-algebra. Then, R is a C_{2}-construction if and only if R contains a k-subalgebra $\left(B, m_{B}, k\right)$ and an element $x \in m$ satisfying the following conditions:
(1) $0 \neq x^{p} \in \operatorname{Soc}(B)$ for some positive integer $p>1$
(2) $m_{B} x=(0)$
(3) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+(p-1)$

For $p=4$, using C_{2}-construction, we can construct a maximal commutative k-subalgebra from a maximal commutative subalgebra of smaller dimension by three. But, we can construct a maximal commutative subalgebra from a maximal commutative subalgebra of smaller dimension by three by using the following theorem that is the main result of this paper.

Theorem 2.5. Let $\left(B, m_{B}, k\right)$ be a finite dimensional commutative k-algebra with identity and N a finitely generated faithful B-module. Suppose $B \cong \operatorname{Hom}_{B}(N, N)$ via the regular representation. Let $R=$ $B[X, Y, Z] / I$, where the ideal I is as follows:

$$
I=\left(m_{B} X, m_{B} Y, m_{B} Z, X^{2}-w, Y^{2}-w, Z^{2}-w, X Y, Y Z, Z X\right)
$$

Here $w \neq 0 \in \operatorname{Soc}(B)$ with $\operatorname{dim}_{k}(N w)=1$ and $M=N \oplus N w \oplus N w \oplus N w$. Then R is isomorphic to a maximal commutative subalgebra of $M_{n}(k)$, where $n=\operatorname{dim}_{k}(M)$.

Proof. Let x, y and z be the images of X, Y and Z in R. Then, M is an R-module via

$$
\begin{aligned}
\left(n, n_{1} w, n_{2} w, n_{3} w\right) x & =\left(n_{1} w, n w, 0,0\right) \\
\left(n, n_{1} w, n_{2} w, n_{3} w\right) y & =\left(n_{2} w, 0, n w, 0\right) \\
\left(n, n_{1} w, n_{2} w, n_{3} w\right) z & =\left(n_{3} w, 0,0, n w\right)
\end{aligned}
$$

Since N is a finitely generated faithful B-module, M is a finitely generated faithful R-module.

Now, let $f \in \operatorname{Hom}_{R}(M, M)$ and define $\phi_{1}: N \rightarrow M$ and $\phi_{2}: M \rightarrow N$ as follows:

$$
\phi_{1}(n)=(n, 0,0,0), \quad \phi_{2}\left(n, n_{1} w, n_{2} w, n_{3} w\right)=n .
$$

Then, obviously ϕ_{1} and ϕ_{2} are B-module homomorphisms. Let ϕ be the composition of the homomorphisms ϕ_{1}, f, and ϕ_{2}, that is,

$$
\phi=\phi_{2} f \phi_{1} .
$$

Then ϕ is a B-module homomorphism from N to N. Since B is isomorphic to $\operatorname{Hom}_{B}(N, N)$ via the regular representation, $\phi=\mu_{a}$ for some $a \in B$. Thus,

$$
\phi_{2}(f(n, 0,0,0))=\phi_{2} f \phi_{1}(n)=\phi(n)=\mu_{a}(n)=n a .
$$

By the definition of ϕ_{2}, there exist three B-module homomorphisms $\psi_{i} ; N \rightarrow N w$, for $i=1,2,3$ such that

$$
f(n, 0,0,0)=\left(n a, \psi_{1}(n), \psi_{2}(n), \psi_{3}(n)\right) .
$$

Since $\operatorname{dim}_{k}(N w)=1$, there exists an element $p \in N$ such that $\{p w\}$ is a k-vector space basis of $N w$. Thus, there exist $t_{1}, t_{2}, t_{3} \in k$ such that

$$
\psi_{i}(p)=t_{i} p w, \quad i=1,2,3 .
$$

Then, $a+t_{1} x+t_{2} y+t_{3} z \in R$ and eventually we want to show

$$
f=\mu_{a+t_{1} x+t_{2} y+t_{3} z} .
$$

Since $p w$ generates $N w$, we can let

$$
n_{i} w=s_{i} p w
$$

for some $s_{i} \in k, i=1,2,3$. Thus, we want to show the following identity:

$$
f\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right)=\mu_{a+t_{1} x+t_{2} y+t_{3} z}\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right)
$$

For the simplicity, let

$$
r=a+t_{1} x+t_{2} y+t_{3} z, \quad A=\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right) .
$$

Then,

$$
\begin{aligned}
\mu_{r}(A)= & A r=\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right)\left(a+t_{1} x+t_{2} y+t_{3} z\right) \\
= & \left(n a, s_{1} p w a, s_{2} p w a, s_{3} p w a\right)+\left(s_{1} p w t_{1}, n t_{1} w, 0,0\right) \\
& +\left(s_{2} p w t_{2}, 0, n t_{2} w, 0\right)+\left(s_{3} p w t_{3}, 0,0, n t_{3} w\right) \\
= & u+v .
\end{aligned}
$$

Here,

$$
\begin{aligned}
& u=\left(n a, n t_{1} w, n t_{2} w, n t_{3} w\right) \\
& v=\left(s_{1} p w t_{1}+s_{2} p w t_{2}+s_{3} p w t_{3}, s_{1} p w a, s_{2} p w a, s_{3} p w a\right) .
\end{aligned}
$$

Note that
$f(A)=f\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right)=f(n, 0,0,0)+f\left(0, s_{1} p w, s_{2} p w, s_{3} p w\right)$.

But, for each i, j,

$$
\psi_{i}\left(s_{j} p\right)=s_{j} \psi_{i}(p)=s_{j} t_{i} p w
$$

Thus,

$$
\begin{aligned}
f\left(0, s_{1} p w, s_{2} p w, s_{3} p w\right)= & f\left(\left(s_{1} p, 0,0,0\right) x+\left(s_{2} p, 0,0,0\right) y+\left(s_{3} p, 0,0,0\right) z\right) \\
= & \left(s_{1} p a, \psi_{1}\left(s_{1} p\right), \psi_{2}\left(s_{1} p\right), \psi_{3}\left(s_{1} p\right)\right) x \\
& +\left(s_{2} p a, \psi_{1}\left(s_{2} p\right), \psi_{2}\left(s_{2} p\right), \psi_{3}\left(s_{2} p\right)\right) y \\
& +\left(s_{3} p a, \psi_{1}\left(s_{3} p\right), \psi_{2}\left(s_{3} p\right), \psi_{3}\left(s_{3} p\right)\right) z \\
= & \left(\psi_{1}\left(s_{1} p\right), s_{1} p a w, \psi_{2}\left(s_{1} p\right) w, \psi_{3}\left(s_{1} p\right) w\right) \\
& +\left(\psi_{2}\left(s_{2} p\right), \psi_{1}\left(s_{2} p\right) w, s_{2} p a w, \psi_{3}\left(s_{2} p\right) w\right) \\
& +\left(\psi_{3}\left(s_{3} p\right), \psi_{1}\left(s_{3} p\right) w, \psi_{2}\left(s_{3} p\right) w, s_{3} p a w\right) \\
= & \left(s_{1} p t_{1} w, s_{1} p a w, s_{1} p t_{2} w^{2}, s_{1} p t_{3} w^{2}\right) \\
& +\left(s_{2} p t_{2} w, s_{2} p t_{1} w^{2}, s_{2} p a w, s_{2} p t_{3} w^{2}\right) \\
& +\left(s_{3} p t_{3} w, s_{3} p t_{1} w^{2}, s_{3} p t_{2} w^{2}, s_{3} p a w\right) \\
= & \left(s_{1} p t_{1} w, s_{1} p a w, 0,0\right)+\left(s_{2} p t_{2} w, 0, s_{2} p a w, 0\right) \\
& +\left(s_{3} p t_{3} w, 0,0, s_{3} p a w\right) \\
= & \left(s_{1} p t_{1} w+s_{2} p t_{2} w+s_{3} p t_{3} w, s_{1} p a w, s_{2} p a w, s_{3} p a w\right) .
\end{aligned}
$$

Note that $n w=s p w$ for some $s \in k$. Thus,

$$
\begin{aligned}
\left(n w t_{1}, n w a, 0,0\right) & =\left(s p w t_{1}, \text { spwa }, 0,0\right)=f(0, s p w, 0,0) \\
& =f(0, n w, 0,0)=f((n, 0,0,0) x)=f(n, 0,0,0) x \\
& =\left(n a, \psi_{1}(n), \psi_{2}(n), \psi_{3}(n)\right) x \\
& =\left(\psi_{1}(n), n a w, \psi_{2}(n) w, \psi_{3}(n) w\right) .
\end{aligned}
$$

This implies that

$$
\psi_{1}(n)=n w t_{1} .
$$

Similarly, we have the followings:

$$
\begin{aligned}
\left(n w t_{2}, 0, n w a, 0\right) & =\left(s p w t_{2}, 0, \text { spwa, } 0\right)=f(0,0, s p w, 0) \\
& =f(0,0, n w, 0)=f((n, 0,0,0) y)=f(n, 0,0,0) y \\
& =\left(n a, \psi_{1}(n), \psi_{2}(n), \psi_{3}(n)\right) y \\
& =\left(\psi_{2}(n), \psi_{1}(n) w, n a w, \psi_{3}(n) w\right) .
\end{aligned}
$$

Thus,

$$
\psi_{2}(n)=n w t_{2} .
$$

Finally, we have

$$
\begin{aligned}
\left(n w t_{3}, 0,0, n w a\right) & =\left(s p w t_{3}, 0,0, s p w a\right)=f(0,0,0, s p w) \\
& =f(0,0,0, n w)=f((n, 0,0,0) z)=f(n, 0,0,0) z \\
& =\left(n a, \psi_{1}(n), \psi_{2}(n), \psi_{3}(n)\right) z \\
& =\left(\psi_{3}(n), \psi_{1}(n) w, \psi_{2}(n) w, n a w\right) .
\end{aligned}
$$

Thus,

$$
\psi_{3}(n)=n w t_{3} .
$$

From the above results, we have the following identity:

$$
\begin{aligned}
f(n, 0,0,0) & =\left(n a, \psi_{1}(n), \psi_{2}(n), \psi_{3}(n)\right) \\
& =\left(n a, n t_{1} w, n t_{2} w, n t_{3} w\right) .
\end{aligned}
$$

Therefore, we have proved the following two identities:
(1) $f(n, 0,0,0)=u$
(2) $f\left(0, s_{1} p w, s_{2} p w, s_{3} p w\right)=v$

Thus, we finally obtain

$$
f\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right)=\mu_{a+t_{1} x+t_{2} y+t_{3} z}\left(n, s_{1} p w, s_{2} p w, s_{3} p w\right) .
$$

Therefore, we have the following result:

$$
f=\mu_{a+t_{1} x+t_{2} y+t_{3} z} .
$$

Since M is a faithful R-module, R is isomorphic to $\operatorname{Hom}_{R}(M, M)$ via the regular representation.

Remark. In the above theorem, R thus defined is isomorphic to a maximal commutative subalgebra of $M_{n}(k)$, where $n=\operatorname{dim}_{k}(M)$. We will call the k-algebra R of the form in Theorem 2.5 a C_{2}^{3}-construction.

With a C_{2}^{3}-construction, a maximal commutative subalgebra B of $M_{n}(k)$ with $\operatorname{dim}_{k}(B)=s$ can be embedded in a maximal commutative subalgebra R of $M_{n+3}(k)$ with $\operatorname{dim}_{k}(R)=s+3$.

The following theorem provides an equivalent condition for R to be a C_{2}^{3}-construction.

Theorem 2.6. Let (R, m, k) be a finite dimensional commutative algebra. Then, R is a C_{2}^{3}-construction if and only if there exists commutative k-subalgebra $\left(B, m_{B}, k\right)$ and elements $x, y, z \in m$ satisfying the following properties :
(1) $x^{2}=y^{2}=z^{2} \in \operatorname{Soc}(B)-\{0\}$
(2) $x y=y z=z x=0$
(3) $m_{B} x=(0)=m_{B} y=m_{B} z$
(4) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+3$

Proof. Suppose R is a C_{2}^{3}-construction. Then, obviously the four conditions (1),(2),(3), and (4) are satisfied.

Conversely, suppose there exist a k-subalgebra B and elements $x, y, z \in$ m such that the four conditions are satisfied. Let $x^{2}=y^{2}=z^{2}=w \in$ $\operatorname{Soc}(B)$ and let I be the following ideal :

$$
I=\left(m_{B} X, m_{B} Y, m_{B} Z, X^{2}-w, Y^{2}-w, Z^{2}-w, X Y, Y Z, Z X\right)
$$

Define a map

$$
\psi: B[X, Y, Z] / I \longrightarrow R
$$

by

$$
\psi(b+I)=b, \quad \psi(X+I)=x, \quad \psi(Y+I)=y, \quad \psi(Z+I)=z
$$

,where $b \in B$. Then, ψ is a k-algebra homomorphism. Suppose $\psi(a+$ $b X+c Y+d Z+I)=0$. Then,

$$
a+b x+c y+d z=0 .
$$

Here, we may assume $b, c, d \in k$ since $m_{B} x=m_{B} y=m_{B} z=(0)$. Assume $a \neq 0$, then $a \notin m_{B}$. For, if $a \in m_{B}$, then we have

$$
0=a x+b x^{2}+c x y+d x z=b w .
$$

Since $w \neq 0 \in \operatorname{Soc}(B)$, we should have $b=0$. By the similar ways, we can easily have $c=d=0$. But then $a=0$ which is impossible. Thus, $a \notin m_{B}$ and hence $a+b x+c y+d z$ is a unit which is impossible. Thus, we have $a=0$. If $b \neq 0$, then $x+\left(b^{-1} c\right) y+\left(b^{-1} d\right) z=0$ since $a=0$. By multiplying x each side, we get

$$
0=x^{2}+\left(b^{-1} c\right) x y+\left(b^{-1} d\right) x z=x^{2}=w
$$

which is impossible and so $b=0$. Similarly, we can show $c=d=0$. This implies ψ is monomorphism. Note that

$$
\operatorname{dim}_{k}(i m(\psi))=\operatorname{dim}_{k}(B[x, y, z])=\operatorname{dim}_{k}(B)+3=\operatorname{dim}_{k}(R)
$$

Therefore, ψ is an isomorphism and we conclude the algebra R is a C_{2}^{3}-construction.

Here we have an example of C_{2}^{3}-construction. We will let $E_{i j}$ be the (i, j)-th matrix unit.

Example 2.7. Let $R=m \oplus k I_{5}$ be a maximal k-subalgebra of $M_{5}(k)$ such that $r \in m$ is of the following form :

$$
r=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0 \\
b & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 \\
d & a & b & c & 0
\end{array}\right),
$$

where $a, b, c, d \in k$.
Let $B=k\left[E_{51}\right]$. Then, $\operatorname{Soc}(B)=k E_{51}=m_{B}$. Thus, if we let

$$
x=E_{21}+E_{52}, \quad y=E_{31}+E_{53}, \quad z=E_{41}+E_{54}
$$

then the following conditions can be easily proved :
(1) $x^{2}=y^{2}=z^{2} \in \operatorname{Soc}(B)-\{0\}$
(2) $x y=y z=z x=0$
(3) $m_{B} x=(0)=m_{B} y=m_{B} z$
(4) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+3$

Thus, by Theorem 2.6, R is a C_{2}^{3}-construction.

Now, we want to prove that a C_{i}-construction doesn't imply a C_{2}^{3} construction for $i=1,2$.

Corollary 2.8. A C_{1}-construction doesn't imply a C_{2}^{3}-construction.

Proof. Let $R=m \oplus k I_{3}$ be a maximal k-subalgebra of $M_{3}(k)$ such that the element $r \in m$ is of the following form:

$$
\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

where $a, b \in k$. By Corollary 2.2, the algebra R is a C_{1}-construction since $m^{2}=(0)$. But, the algebra R can't be a C_{2}^{3}-construction since there are no elements x, y, and z in m whose squares are not zero. Thus, R is a C_{1}-construction but not a C_{2}^{3}-construction by Theorem 2.6.

Corollary 2.9. A C_{2}^{3}-construction doesn't imply a C_{1}-construction.

Proof. Let k be the real number field and let $R=m \oplus k I_{5}$ be a maximal k-subalgebra of $M_{5}(k)$ as in Example 2.7. Then, R is a C_{2}^{3} construction. Suppose R is a C_{1}-construction. Then, there exists an ideal I of R such that $A n n_{R}(I)=I$. If we let $r \in A n n_{R}(I)$, then for some real numbers a, b, c, d, the element r is of the following form :

$$
r=a\left(E_{21}+E_{52}\right)+b\left(E_{31}+E_{53}\right)+c\left(E_{41}+E_{54}\right)+d E_{51} .
$$

Since $A n n_{R}(I)=I$, we have $0=r^{2}=\left(a^{2}+b^{2}+c^{2}\right) E_{51}$ and hence $a=b=c=0$. But, then $r=d E_{51}$ and so $A n n_{R}(I)=k E_{51}$ which is impossible since $E_{21}+E_{52} \in A n n_{R}(I)=I$. Thus, the algebra R in Example 2.7 is a C_{2}^{3}-construction but not a C_{1}-construction.

Corollary 2.10. A C_{2}-construction doesn't imply a C_{2}^{3}-construction.
Proof. Let k be any field and let $R=m \oplus k I_{4}$ be a maximal k subalgebra of $M_{4}(k)$ such that $r \in m$ is of the following form :

$$
r=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
b & a & 0 & 0 \\
c & 0 & 0 & 0
\end{array}\right),
$$

where $a, b, c \in k$.
If we let $B=k\left[E_{31}, E_{41}\right]$ and $r=E_{21}+E_{32}$, then
(1) $E_{31}=r^{2} \in \operatorname{Soc}(B)$
(2) $r m_{B}=(0)$
(3) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+1$

This implies R is a C_{2}-construction by Theorem 2.4.
Now, suppose R is a C_{2}^{3}-construction, then R contains a k-subalgebra B such that for some $x, y, z \in m$,

$$
x^{2}, y^{2}, z^{2} \in \operatorname{Soc}(B)-\{0\}, \quad x y=0=y z=z x
$$

For some $a_{i}, b_{i}, c_{i} \in k$, the elements $x, y, z \in m$ can be written as follows:

$$
\begin{aligned}
& x=a_{1}\left(E_{21}+E_{32}\right)+b_{1} E_{31}+c_{1} E_{41} \\
& y=a_{2}\left(E_{21}+E_{32}\right)+b_{2} E_{31}+c_{2} E_{41} \\
& z=a_{3}\left(E_{21}+E_{32}\right)+b_{3} E_{31}+c_{3} E_{41} .
\end{aligned}
$$

Thus, we have the following identities :

$$
\begin{aligned}
& x^{2}=a_{1}^{2} E_{31}, y^{2}=a_{2}^{2} E_{31}, \quad z^{2}=a_{3}^{2} E_{31} \\
& x y=a_{1} a_{2} E_{31}, \quad y z=a_{2} a_{3} E_{31}, \quad z x=a_{3} a_{1} E_{31} .
\end{aligned}
$$

But, by the conditions, we have

$$
a_{1} \neq 0, \quad a_{2} \neq 0, \quad a_{3} \neq 0, \quad a_{1} a_{2}=0, \quad a_{2} a_{3}=0, \quad a_{3} a_{1}=0
$$

which is impossible and hence R can't be a C_{2}^{3}-construction by Theorem 2.6. Thus, R is a C_{2}-construction but not a C_{2}^{3}-construction.

References

[1] W.C. Brown and F.W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, 59(12) (1993), 4439-4460.
[2] W.C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices. Communications in Algebra, 22(10) (1994), 4051-4066.
[3] W.C. Brown, Constructing Maximal Commutative Subalgebras of Matrix Rings in Small Dimensions. Communications in Algebra, 25(12) (1997), 3923-3946.
[4] R.C. Courter, The Dimension of Maximal Commutative Subalgebras of K_{n}. Duke Mathematical Journal, 32 (1965), 225-232.
[5] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices. Communications in Algebra, 25(12) (1997), 3823-3840.
[6] Youngkwon Song, Maximal Commutative Subalgebras of Matrix Algebras. Communications in Algebra, 27(4) (1999), 1649-1663.
[7] Youngkwon Song, Notes on the Constructions of Maximal Commutative Subalgebra of $M_{n}(k)$. Communications in Algebra, 29(10) (2001), 4333-4339.

Department of Mathematics
Research Institute of Basic Science
Kwangwoon University
Seoul 139-701, Korea
E-mail: yksong@daisy.kwangwoon.ac.kr

