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C3
2 -CONSTRUCTION ON Mn(k)

Youngkwon Song

Abstract. Let (B,mB , k) be a maximal commutative k-subalgebra
of a matrix algebra Mn(k). We will construct a maximal commu-
tative k-subalgebra (R,m, k) of Mn+3(k) from the algebra B such
that the algebra R has dimension greater than the dimension of B
by 3. Moreover, we will show a Ci-construction doesn’t imply a
C3

2 -construction for i = 1, 2.

1. Introduction

Let (B,mB, k) be a maximal commutative k-subalgebra of Mn(k).
Then, in [2], W.C. Brown introduced a way to construct a maximal
commutative k-subalgebra from the algebra B of smaller dimension by
one.

In this paper, we want to construct a maximal commutative subalge-
bra (R,m, k) of a matrix algebra Mn+3(k) from a maximal commutative
subalgebra B of Mn(k). This construction is useful to embed a maximal
commutative k-subalgebra of matrix algebra in a maximal commutative
k-subalgebra of a larger size of matrix algebra. Also we can construct
a maximal commutative k-subalgebra from a maximal commutative k-
subalgebra of smaller dimension by three. In other words, if there is a
maximal commutative k-subalgebra of dimension s, then we can always
construct a maximal commutative k-subalgebra of dimension s + 3 by
using this construction.

Moreover, we will show this construction is neither a C1-construction
nor a C2-construction defined in [3].
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2. New construction

Let (B,mB, k) is a finite dimensional commutative k-algebra with
identity and N a finitely generated faithful B-module. Then, R =
B ⊕ N ` is a maximal commutative k-subalgebra which is called a C1-
construction.

The next theorem present an equivalent condition to be a C1-construction
and the proof can be found in [1].

Theorem 2.1. [1] Let (R,m, k) be a commutative k-algebra. Then,
R is a C1-construction if and only if there is an ideal I satisfying the
following conditions:

(1) AnnR(I) = I
(2) 0 → I → R→ R/I → 0 splits as k-algebras.

The following corollary is obtained directly from Theorem 2.1.

Corollary 2.2. [1, 2] Let (R,m, k) be a commutative k-algebra. If
m2 = (0), then R is a C1-construction.

Throughout this paper, the socle of an algebra R will be denoted by
Soc(R).

Theorem 2.3. [2] Let (B,mB, k) be a finite dimensional commutative
k-algebra with identity and N a finitely generated faithful B-module.
Suppose B ∼= HomB(N,N) via the regular representation. Then there
exists an element w 6= 0 ∈ Soc(B) with dimk(Nw) = 1.

Let (B,mB, k) be a finite dimensional commutative k-algebra with
identity. If R ∼= B[X]/(mBX,X

p − w), for some w ∈ Soc(B) − {0}
and a positive integer p > 1, then we say the algebra R of this form a
C2-construction.

Here is an equivalent condition to be a C2-construction and can be
found in [3].
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Theorem 2.4. [3] Let (R,m, k) be a commutative k-algebra. Then,
R is a C2-construction if and only if R contains a k-subalgebra (B,mB, k)
and an element x ∈ m satisfying the following conditions:

(1) 0 6= xp ∈ Soc(B) for some positive integer p > 1

(2) mBx = (0)

(3) dimk(R) = dimk(B) + (p− 1)

For p = 4, using C2-construction, we can construct a maximal commu-
tative k-subalgebra from a maximal commutative subalgebra of smaller
dimension by three. But, we can construct a maximal commutative sub-
algebra from a maximal commutative subalgebra of smaller dimension
by three by using the following theorem that is the main result of this
paper.

Theorem 2.5. Let (B,mB, k) be a finite dimensional commutative
k-algebra with identity and N a finitely generated faithful B-module.
Suppose B ∼= HomB(N,N) via the regular representation. Let R =
B[X, Y, Z]/I, where the ideal I is as follows:

I = (mBX,mBY,mBZ,X
2 − w, Y 2 − w,Z2 − w,XY, Y Z, ZX).

Here w 6= 0 ∈ Soc(B) with dimk(Nw) = 1 andM = N⊕Nw⊕Nw⊕Nw.
Then R is isomorphic to a maximal commutative subalgebra of Mn(k),
where n = dimk(M).

Proof. Let x, y and z be the images of X, Y and Z in R. Then, M is
an R-module via

(n, n1w, n2w, n3w)x = (n1w, nw, 0, 0)

(n, n1w, n2w, n3w)y = (n2w, 0, nw, 0)

(n, n1w, n2w, n3w)z = (n3w, 0, 0, nw)

Since N is a finitely generated faithful B-module, M is a finitely
generated faithful R-module.

Now, let f ∈ HomR(M,M) and define φ1 : N →M and φ2 : M → N
as follows:

φ1(n) = (n, 0, 0, 0), φ2(n, n1w, n2w, n3w) = n.
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Then, obviously φ1 and φ2 are B-module homomorphisms. Let φ be the
composition of the homomorphisms φ1, f ,and φ2, that is,

φ = φ2fφ1.

Then φ is a B-module homomorphism from N to N . Since B is isomor-
phic to HomB(N,N) via the regular representation, φ = µa for some
a ∈ B. Thus,

φ2(f(n, 0, 0, 0)) = φ2fφ1(n) = φ(n) = µa(n) = na.

By the definition of φ2, there exist three B-module homomorphisms
ψi;N → Nw, for i = 1, 2, 3 such that

f(n, 0, 0, 0) = (na, ψ1(n), ψ2(n), ψ3(n)).

Since dimk(Nw) = 1, there exists an element p ∈ N such that {pw} is
a k-vector space basis of Nw. Thus, there exist t1, t2, t3 ∈ k such that

ψi(p) = tipw, i = 1, 2, 3.

Then, a+ t1x+ t2y + t3z ∈ R and eventually we want to show

f = µa+t1x+t2y+t3z.

Since pw generates Nw, we can let

niw = sipw

for some si ∈ k, i = 1, 2, 3. Thus, we want to show the following identity:

f(n, s1pw, s2pw, s3pw) = µa+t1x+t2y+t3z(n, s1pw, s2pw, s3pw)

For the simplicity, let

r = a+ t1x+ t2y + t3z, A = (n, s1pw, s2pw, s3pw).

Then,

µr(A) = Ar = (n, s1pw, s2pw, s3pw)(a+ t1x+ t2y + t3z)
= (na, s1pwa, s2pwa, s3pwa) + (s1pwt1, nt1w, 0, 0)

+ (s2pwt2, 0, nt2w, 0) + (s3pwt3, 0, 0, nt3w)
= u+ v.

Here,

u = (na, nt1w, nt2w, nt3w)
v = (s1pwt1 + s2pwt2 + s3pwt3, s1pwa, s2pwa, s3pwa).

Note that

f(A) = f(n, s1pw, s2pw, s3pw) = f(n, 0, 0, 0) + f(0, s1pw, s2pw, s3pw).
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But, for each i, j,

ψi(sjp) = sjψi(p) = sjtipw.

Thus,

f(0, s1pw, s2pw, s3pw) = f((s1p, 0, 0, 0)x+ (s2p, 0, 0, 0)y + (s3p, 0, 0, 0)z)
= (s1pa, ψ1(s1p), ψ2(s1p), ψ3(s1p))x

+ (s2pa, ψ1(s2p), ψ2(s2p), ψ3(s2p))y
+ (s3pa, ψ1(s3p), ψ2(s3p), ψ3(s3p))z

= (ψ1(s1p), s1paw, ψ2(s1p)w,ψ3(s1p)w)
+ (ψ2(s2p), ψ1(s2p)w, s2paw, ψ3(s2p)w)
+ (ψ3(s3p), ψ1(s3p)w,ψ2(s3p)w, s3paw)

= (s1pt1w, s1paw, s1pt2w
2, s1pt3w

2)
+ (s2pt2w, s2pt1w

2, s2paw, s2pt3w
2)

+ (s3pt3w, s3pt1w
2, s3pt2w

2, s3paw)
= (s1pt1w, s1paw, 0, 0) + (s2pt2w, 0, s2paw, 0)

+ (s3pt3w, 0, 0, s3paw)
= (s1pt1w + s2pt2w + s3pt3w, s1paw, s2paw, s3paw).

Note that nw = spw for some s ∈ k. Thus,

(nwt1, nwa, 0, 0) = (spwt1, spwa, 0, 0) = f(0, spw, 0, 0)
= f(0, nw, 0, 0) = f((n, 0, 0, 0)x) = f(n, 0, 0, 0)x
= (na, ψ1(n), ψ2(n), ψ3(n))x
= (ψ1(n), naw, ψ2(n)w,ψ3(n)w).

This implies that

ψ1(n) = nwt1.

Similarly, we have the followings:

(nwt2, 0, nwa, 0) = (spwt2, 0, spwa, 0) = f(0, 0, spw, 0)
= f(0, 0, nw, 0) = f((n, 0, 0, 0)y) = f(n, 0, 0, 0)y
= (na, ψ1(n), ψ2(n), ψ3(n))y
= (ψ2(n), ψ1(n)w, naw, ψ3(n)w).

Thus,

ψ2(n) = nwt2.
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Finally, we have

(nwt3, 0, 0, nwa) = (spwt3, 0, 0, spwa) = f(0, 0, 0, spw)
= f(0, 0, 0, nw) = f((n, 0, 0, 0)z) = f(n, 0, 0, 0)z
= (na, ψ1(n), ψ2(n), ψ3(n))z
= (ψ3(n), ψ1(n)w,ψ2(n)w, naw).

Thus,
ψ3(n) = nwt3.

From the above results, we have the following identity:

f(n, 0, 0, 0) = (na, ψ1(n), ψ2(n), ψ3(n))
= (na, nt1w, nt2w, nt3w).

Therefore, we have proved the following two identities:

(1) f(n, 0, 0, 0) = u

(2) f(0, s1pw, s2pw, s3pw) = v

Thus, we finally obtain

f(n, s1pw, s2pw, s3pw) = µa+t1x+t2y+t3z(n, s1pw, s2pw, s3pw).

Therefore, we have the following result:

f = µa+t1x+t2y+t3z.

Since M is a faithful R-module, R is isomorphic to HomR(M,M) via
the regular representation.

Remark. In the above theorem, R thus defined is isomorphic to a
maximal commutative subalgebra of Mn(k), where n = dimk(M). We
will call the k-algebra R of the form in Theorem 2.5 a C3

2 -construction.
With a C3

2 -construction, a maximal commutative subalgebra B of
Mn(k) with dimk(B) = s can be embedded in a maximal commutative
subalgebra R of Mn+3(k) with dimk(R) = s+ 3.

The following theorem provides an equivalent condition for R to be a
C3

2 -construction.

Theorem 2.6. Let (R,m, k) be a finite dimensional commutative
algebra. Then, R is a C3

2 -construction if and only if there exists commu-
tative k-subalgebra (B,mB, k) and elements x, y, z ∈ m satisfying the
following properties :
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(1) x2 = y2 = z2 ∈ Soc(B)− {0}
(2) xy = yz = zx = 0
(3) mBx = (0) = mBy = mBz
(4) dimk(R) = dimk(B) + 3

Proof. Suppose R is a C3
2 -construction. Then, obviously the four

conditions (1),(2),(3), and (4) are satisfied.
Conversely, suppose there exist a k-subalgebraB and elements x, y, z ∈

m such that the four conditions are satisfied. Let x2 = y2 = z2 = w ∈
Soc(B) and let I be the following ideal :

I = (mBX,mBY,mBZ,X
2 − w, Y 2 − w,Z2 − w,XY, Y Z, ZX).

Define a map

ψ : B[X, Y, Z]/I −→ R

by

ψ(b+ I) = b, ψ(X + I) = x, ψ(Y + I) = y, ψ(Z + I) = z

,where b ∈ B. Then, ψ is a k-algebra homomorphism. Suppose ψ(a +
bX + cY + dZ + I) = 0. Then,

a+ bx+ cy + dz = 0.

Here, we may assume b, c, d ∈ k since mBx = mBy = mBz = (0).
Assume a 6= 0, then a /∈ mB. For, if a ∈ mB, then we have

0 = ax+ bx2 + cxy + dxz = bw.

Since w 6= 0 ∈ Soc(B), we should have b = 0. By the similar ways, we
can easily have c = d = 0. But then a = 0 which is impossible. Thus,
a /∈ mB and hence a+ bx+ cy + dz is a unit which is impossible. Thus,
we have a = 0. If b 6= 0, then x+ (b−1c)y + (b−1d)z = 0 since a = 0. By
multiplying x each side, we get

0 = x2 + (b−1c)xy + (b−1d)xz = x2 = w

which is impossible and so b = 0. Similarly, we can show c = d = 0.
This implies ψ is monomorphism. Note that

dimk(im(ψ)) = dimk(B[x, y, z]) = dimk(B) + 3 = dimk(R)

Therefore, ψ is an isomorphism and we conclude the algebra R is a
C3

2 -construction.
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Here we have an example of C3
2 -construction. We will let Eij be the

(i, j)-th matrix unit.

Example 2.7. Let R = m⊕kI5 be a maximal k-subalgebra of M5(k)
such that r ∈ m is of the following form :

r =


0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
c 0 0 0 0
d a b c 0

 ,

where a, b, c, d ∈ k.
Let B = k[E51]. Then, Soc(B) = kE51 = mB. Thus, if we let

x = E21 + E52, y = E31 + E53, z = E41 + E54

then the following conditions can be easily proved :

(1) x2 = y2 = z2 ∈ Soc(B)− {0}
(2) xy = yz = zx = 0
(3) mBx = (0) = mBy = mBz
(4) dimk(R) = dimk(B) + 3

Thus, by Theorem 2.6, R is a C3
2 -construction.

Now, we want to prove that a Ci-construction doesn’t imply a C3
2 -

construction for i = 1, 2.

Corollary 2.8. A C1-construction doesn’t imply a C3
2 -construction.

Proof. Let R = m ⊕ kI3 be a maximal k-subalgebra of M3(k) such
that the element r ∈ m is of the following form: 0 a b

0 0 0
0 0 0

 ,

where a, b ∈ k. By Corollary 2.2, the algebra R is a C1-construction
since m2 = (0). But, the algebra R can’t be a C3

2 -construction since
there are no elements x, y, and z in m whose squares are not zero. Thus,
R is a C1-construction but not a C3

2 -construction by Theorem 2.6.
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Corollary 2.9. A C3
2 -construction doesn’t imply a C1-construction.

Proof. Let k be the real number field and let R = m ⊕ kI5 be a
maximal k-subalgebra of M5(k) as in Example 2.7. Then, R is a C3

2 -
construction. Suppose R is a C1-construction. Then, there exists an
ideal I of R such that AnnR(I) = I. If we let r ∈ AnnR(I), then for
some real numbers a, b, c, d, the element r is of the following form :

r = a(E21 + E52) + b(E31 + E53) + c(E41 + E54) + dE51.

Since AnnR(I) = I, we have 0 = r2 = (a2 + b2 + c2)E51 and hence
a = b = c = 0. But, then r = dE51 and so AnnR(I) = kE51 which
is impossible since E21 + E52 ∈ AnnR(I) = I. Thus, the algebra R in
Example 2.7 is a C3

2 -construction but not a C1-construction.

Corollary 2.10. A C2-construction doesn’t imply a C3
2 -construction.

Proof. Let k be any field and let R = m ⊕ kI4 be a maximal k-
subalgebra of M4(k) such that r ∈ m is of the following form :

r =


0 0 0 0
a 0 0 0
b a 0 0
c 0 0 0

 ,

where a, b, c ∈ k.
If we let B = k[E31, E41] and r = E21 + E32, then

(1) E31 = r2 ∈ Soc(B)
(2) rmB = (0)
(3) dimk(R) = dimk(B) + 1

This implies R is a C2-construction by Theorem 2.4.
Now, suppose R is a C3

2 -construction, then R contains a k-subalgebra
B such that for some x, y, z ∈ m,

x2, y2, z2 ∈ Soc(B)− {0}, xy = 0 = yz = zx.

For some ai, bi, ci ∈ k, the elements x, y, z ∈ m can be written as follows:

x = a1(E21 + E32) + b1E31 + c1E41

y = a2(E21 + E32) + b2E31 + c2E41

z = a3(E21 + E32) + b3E31 + c3E41.
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Thus, we have the following identities :

x2 = a2
1E31, y

2 = a2
2E31, z

2 = a2
3E31

xy = a1a2E31, yz = a2a3E31, zx = a3a1E31.

But, by the conditions, we have

a1 6= 0, a2 6= 0, a3 6= 0, a1a2 = 0, a2a3 = 0, a3a1 = 0

which is impossible and hence R can’t be a C3
2 -construction by Theorem

2.6. Thus, R is a C2-construction but not a C3
2 -construction.
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