COMPLETION OF A UNIFORM SPACE IN K_0 -PROXIMITY SPACE

Song Ho Han

ABSTRACT. We introduce the k_0 -proximity space as a generalization of the Efremovič -proximity space. We try to show every ultrafilter in K_0 -proximity space generates a cluster and every Cauchy cluster is a point cluster.

1. Introduction

The proximity relation δ was introduced in 1950 by Efremovi \check{c} and he showed that the proximity relation δ induces a topology $\tau(\delta)$ in X and that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, τ) admits a compatible proximity δ on X such that $\tau(\delta) = \tau$. He axiomatically characterized the proximity relation, A is near B, which is denoted by $A\delta B$, for subsets A and B of any set X. Efremovi \check{c} axioms of proximity relation δ are as follows;

E1. $A\delta B$ implies $B\delta A$.

E2. $(A \cup B)\delta C$ if and only if $A\delta C$ or $B\delta C$.

E3. $A\delta B$ implies $A \neq \phi$, $B \neq \phi$.

E4. $A \delta B$ implies there exists a subset E such that

 $A\delta E$ and $(X-E)\delta B$.

E5. $A \cap B \neq \phi$ implies $A\delta B$.

A binary relation δ satisfying axioms E1-E5 on the power set of X is called a (Efremocič) proximity on X. If δ also satisfies the following;

E6. $x\delta y$ implies x=y then δ is called the separated proximity relation.

Received December 30, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 54A20, 54B10, 54B15.

Key words and phrases: metric space, proximity space, product space, quotient space.

DEFINITION 1.1. Let δ be a binary relation between a set X and its power set P(X) such that

 K_01 . $x\delta\{y\}$ implies $y\delta\{x\}$.

 K_02 . $x\delta(A\cup B)$ if and only if $x\delta A$ or $x\delta B$.

 K_03 . $x \not \delta \phi$ for all $x \in X$.

 $K_04. \ x \in A \text{ implies } x\delta A.$

 K_05 . For each subset $E \subset X$, if there is a point $x \in X$ such that either $x\delta A$, $x\delta E$ or $x\delta B$, $x\delta(X-E)$, then we have $y\delta A$ and $y\delta B$ for some $y \in X$. The binary relation δ is called the K_0 -proximity on X iff δ satisfies the axioms $K_01 - K_05$. The pair (X, δ) is called a K_0 -proximity space.

 K_06 . If $x\delta\{y\}$ implies x=y, then δ is called the separated K_0 -proximity relation.

LEMMA 1.2. In a K_0 -proximity space (X, δ) let δ_1 be a binary relation on P(X) defined as follows;

If we define $A\delta_1B$ if and only if there is a point $x \in X$ such that $x\delta A, x\delta B$, then δ_1 is an Efremovič proximity.

It is well known that a family \mathcal{L} of subsets of a non-empty set X is an ultrafilter if and only if the following condition are satisfied:

- (i) If A and B belong to \mathcal{L} , then $A \cap B \neq \phi$.
- (ii) If $A \cap C \neq \phi$ for every $C \in \mathcal{L}$, then $A \in \mathcal{L}$.
- (iii) If $(A \cup B) \in \mathcal{L}$, then $A \in \mathcal{L}$ or $B \in \mathcal{L}$.

Now we consider the family of sets in an K_0 -proximity space satisfying condition similar to (i), (ii), (iii), with nearness replacing non-empty intersection and we are led to the following definition:

DEFINITION 1.3. A family σ of subsets of an K_0 -proximity space (X, δ) is called a cluster iff the following condition are satisfied;

- (1) If A and B belong to σ , then there is a point $x \in X$ such that $x\delta A$ and $x\delta B$.
- (2) If for every $C \in \sigma$, there is a point $x \in X$ such that $x\delta A$, $x\delta C$, then $A \in \sigma$.
 - (3) If $(A \cup B) \in \sigma$, then $A \in \sigma$ or $B \in \sigma$.

DEFINITION 1.4. A subset B of a K_0 -proximity space (X, δ) is a δ -neighborhood of A (in symbols $A \ll B$) iff for each $x \in X, x \not \delta A$ or $x \not \delta (X - B)$.

LEMMA 1.5. Let (X, δ) be a K_0 -proximity space let \bar{A} and Int A denote, respectively, the closure and interior of A in $\tau(\delta)$. Then

- 1. $A \ll B$ implies $\bar{A} \ll B$, and
- 2. $A \ll B$ implies $A \ll Int B$.

Therefore $A \subset Int B$, showing that a δ -neighborhood is a topological neighborhood.

DEFINITION 1.6. A uniform structure (or uniformity) \mathcal{U} on a set X is a collection of subsets (called entourages) of $X \times X$ satisfying the following conditions:

- (1) Every entourage contains the diagonal Δ .
- (2) If $U \in \mathcal{U}$ and $V \in \mathcal{U}$, then $U \cap V \in \mathcal{U}$.
- (3) Given $U \in \mathcal{U}$, there exists a $V \in \mathcal{U}$ such that $V \circ V \subset U$.
- (4) If $U \in \mathcal{U}$ and $U \subset V \subset X \times X$, then $V \in \mathcal{U}$.
- (5) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$.

The pair (X, \mathcal{U}) is called a uniform space.

A subfamily β of a uniformity \mathcal{U} is a base for \mathcal{U} iff each entourage in \mathcal{U} contains a member of β .

A family φ is a subbase for \mathcal{U} iff the family of finite intersections of members of φ is a base for \mathcal{U} .

It can be shown that for each $x \in X$, $\{U[x] : U \in \mathcal{U}\}$ is a neighborhood filter. Thus \mathcal{U} generates a topology $\mathcal{T} = \mathcal{T}(\mathcal{U})$ on X.

As is well known, this topology is always completely regular.

If \mathcal{U} satisfies the additional condition

$$(6) \bigcap_{U \in \mathcal{U}} U = \Delta,$$

Then \mathcal{U} is called a Hausdorff or separated uniformity.

In this case, $\mathcal{T}(\mathcal{U})$ is Tychonoff. Conversely, every (Tychonoff) completely regular space (X, \mathcal{T}) has a compactible (separated) uniformity, i.e. a uniformity \mathcal{U} such that $\mathcal{T} = \mathcal{T}(\mathcal{U})$.

Every uniformity has a base consisting of open(closed) symmetric members, and it is frequently more convenient to work with such a base for \mathcal{U} rather than with \mathcal{U} itself.

LEMMA 1.7. Every uniform space (X, \mathcal{U}) has an associated K_0 -proximity $\delta = \delta(\mathcal{U})$ defined by that there is a point $x \in X$ such that $x\delta A$, $x\delta B$ iff $(A \times B) \cap U \neq \phi$ for every $U \in \mathcal{U}$.

Furthermore, $\mathcal{T}(\mathcal{U}) = \mathcal{T}(\delta)$. If \mathcal{U} is separated, then so is $\delta(\mathcal{U})$.

LEMMA 1.8. Let (X,\mathcal{U}) be a uniform space and let $\delta = \delta(\mathcal{U})$. Then $A \ll B$ if and only if there is an entourage U such that $U[A] \subset B$.

LEMMA 1.9. If $f:(X,\mathcal{U}_1)\to (Y,\mathcal{U}_2)$ is uniformly continuous, then $f:(X,\delta_1)\to (Y,\delta_2)$ is K_0 -proximally continuous where $\delta_i=\delta(\mathcal{U}_i)$ for i=1,2.

2. Main Results

Let (X, \mathcal{U}) be a uniform space and $\delta = \delta(\mathcal{U})$. We have seen that every ultrafilter in a K_0 -proximity space generates a cluster and that given a set A in a cluster σ , there exists an ultrafilter containing A which generates σ . It therefore seems natural to call a cluster Cauchy if it is generated by a Cauchy ultrafilter. One can readily convince oneself that every Cauchy cluster can be considered to be a point cluster, determined by a point of the completion of X.

Throughout this section, we shall suppose that \mathcal{U} is an open symmetric base for a separated uniformity.

DEFINITION 2.1. A cluster σ in (X, \mathcal{U}, δ) is Cauchy iff there exists a round Cauchy filter $\mathcal{M} \subset \sigma$ such that $M \cap C \neq \phi$ for each $M \in \mathcal{M}$ and $C \in \sigma$.

Given a round Cauchy filter \mathcal{M} , $U \in \mathcal{U}$ and $n \in \mathbb{N}$, there exists an $M \in \mathcal{M}$ and $V \in \mathcal{U}$ such that $V[M] \times V[M] \subset U$ and $V \subset U$.

This can be seen from the following argument. Since \mathcal{M} is Cauchy and round, there exists sets $M', M \in \mathcal{M}$ such that $M' \times M' \subset U$ and $M \ll M'$. Let $V_1 \in \mathcal{U}$ be such that $V_1[M] \subset M'$.

Then V may be chosen to be that entourages satisfying $\stackrel{n}{V} \subset U \cap V_1$.

DEFINITION 2.2. A uniform space (X, \mathcal{U}) is complete iff every Cauchy cluster in (X, \mathcal{U}, δ) is a point cluster σ_x for some $x \in X$.

LEMMA 2.3. A closed subspace Y of a complete uniform space (X, \mathcal{U}) is complete.

Proof. The trace $\mathcal{U}_Y = \{U \cap (X \times Y) : U \in \mathcal{U}\}\$ of \mathcal{U} on Y is a base for the subspace uniformity on Y. If σ_1 is any Cauchy cluster in Y, then σ_1 is a subclass of a unique Cauchy cluster σ_2 in X. Since X is complete, $\sigma_2 = \sigma_x$ for some $x \in X$. But $x\delta B$ for every $B \in \sigma_1$ and since Y is closed, $x \in Y$. Therefore $\{x\} \in \sigma_1$. Let f be a mapping which associates with each point $x \in X$, the point cluster σ_x . Then f is a one-to-one mapping of X onto the space f(X) of all point clusters. Let X^* denote the set

of all Cauchy clusters in X. Since every point cluster in X is Cauchy, it follows that $f(X) \subset X^* \subset \mathfrak{X}$.

For each Cauchy cluster σ , let $\mathcal{M}(\sigma)$ be one of the filters given by definition 2.1. For each $U \in \mathcal{U}$, define

 $U^* = \{(\sigma_1, \sigma_2) \in X^* \times X^* : \text{there exist } M \in \mathcal{M}(\sigma_1), N \in \mathcal{M}(\sigma_2) \text{ such that } M \times N \subset U\}$

To see that U^* is independent of the choice of $\mathcal{M}(\sigma_1)$ and $\mathcal{M}(\sigma_2)$ suppose $(\sigma_1, \sigma_2) \in U^*$. Then there exists an $M \in \mathcal{M}(\sigma_1), N \in \mathcal{M}(\sigma_2)$ and a $V \in \mathcal{U}$ satisfying $V[M] \times V[N] \subset U$.

Given any $\mathcal{M}'(\sigma_1) \neq \mathcal{M}(\sigma_1)$, we can find an $M' \in \mathcal{M}'(\sigma_1)$ such that $M' \times M' \subset V$. Now $M \cap M' \neq \phi$, so that $M' \subset V[M]$.

Hence $V[M] \in \mathcal{M}'(\sigma_1), V[N] \in \mathcal{M}(\sigma_2)$ and $V[M] \times V[N] \subset U$, showing that U^* is well defined.

LEMMA 2.4. $\mathcal{U}^* = \{U^* : U \in \mathcal{U}\}$ is a uniformity base on X^* .

Proof. Every U^* obviously contains the diagonal, and $(U\cap V)^*\subset U^*\cap V^*$.

Given $U^* \in \mathcal{U}^*$, there exists a $V \in \mathcal{U}$ such that $V \circ V \subset U$. That $V^* \circ V^* \subset U^*$ follows from the follow argument : if $(\sigma_1, \sigma_2) \in V^* \circ V^*$, then there exists a $\sigma_3 \in X^*$ such that $(\sigma_1, \sigma_3) \in V^*$ and $(\sigma_3, \sigma_2) \in V^*$. Hence there exists an $A \in \mathcal{M}(\sigma_1), B \in \mathcal{M}(\sigma_2)$ and $C', C'' \in \mathcal{M}(\sigma_3)$ such that $A \times C' \subset V$ and $C'' \times B \subset V$. Setting $C = C' \cap C'' \in \mathcal{M}(\sigma_3)$, we have $A \times C \subset V$ and $C \times B \subset V$, Therefore $A \times B \subset V \circ V \subset U$, which implies $(\sigma_1, \sigma_2) \in U^*$.

Since $f(X) \subset X^* \subset \mathfrak{X}$ and f(X) is dense in \mathfrak{X} , we have the following result:

LEMMA 2.5. f(X) is a dense subset of X^* .

Let δ^* be the K_0 -proximity induced by \mathcal{U}^* on X^* . The restriction \mathcal{U}_f^* of \mathcal{U}^* to f(X) is a uniformity base on f(X) and so induces the K_0 -proximity δ_f^* on f(X).

THEOREM 2.6. (X, \mathcal{U}, δ) and $(F(X), \mathcal{U}_f^*, \delta_f^*)$ are K_0 -proximally isomorphic.

Proof. Clearly f is one-to-one and onto. Suppose for some $x \in X, x\delta A$ and $x\delta B$. Given $U \in \mathcal{U}$, let $U_f^* = U^* \cap (f(X) \times f(X))$.

Then we must show that for some $x \in X$, $(f(x) \times f(A)) \cap U_f^* \neq \phi$ and $(f(x) \times f(B)) \cap U_f^* \neq \phi$. Let $V \in \mathcal{U}$ be such that $U \subset U$.

Since for some $x \in X$, $x\delta A$ and $x\delta B$, there exist $a \in A$, $b \in B$ such that $(a,b) \in V$. Therefore $V[a] \times V[b] \subset U$, and the point cluster σ_a , σ_b satisfy the condition $(\sigma_a, \sigma_b) \in U_f^*$. Conversely, if for some $x \in X$, $f(x)\delta_f^*f(A)$ and $f(x)\delta_f^*f(B)$, then for each U_f^* there exist a $(\sigma_a, \sigma_b) \in U_f^*$, where $\sigma_a \in f(A)$, $\sigma_b \in f(B)$.

Hence $(a, b) \in U$ and we have $(A \times B) \cap U \neq \phi$ for arbitrary $U \in \mathcal{U}$, showing for some $x \in X, x\delta A$ and $x\delta B$.

It can similarly be proved that (X, \mathcal{U}) and $(f(X), \mathcal{U}_f^*)$ are uniformly isomorphic.

THEOREM 2.7. Every Cauchy cluster in $(X^*, \mathcal{U}^*, \delta^*)$ is a point cluster.

Proof. Let σ^* be any Cauchy cluster in X^* . Since f(X) is dense in X^* , σ^* determines a unique Cauchy cluster σ' in f(X) such that $\sigma' \subset \sigma^*$. But σ' is isomorphic to a Cauchy cluster σ in X. In order to show that $\sigma \in \sigma^*$, it is sufficient to verify that for each $U^* \in \mathcal{U}^*$ and each $M \in \sigma'$, $(\sigma \times M) \cap U^* \neq \phi$.

Given $U^* \in \mathcal{U}^*$, there exists a $V \in \mathcal{U}$ and $C \in \mathcal{M}(\sigma)$ such that $\overset{3}{V} \subset U$ and $C \times C \subset V$.

Then $V[C] \times V[C] \subset U$. Setting $M_0 = V[C] \cap f^{-1}(M)$ we have $M_0 \in \sigma$ since $V[C] \in \mathcal{M}(\sigma), f^{-1}(M) \in \sigma$, and we can find an ultrafilter containing both V[C] and $f^{-1}[M]$ which generates σ .

Choose a point $p \in M_0$. Since V[C] is open, there exists a $W \in \mathcal{U}$ such that $W[p] \subset V[C]$. We therefore have $W[p] \times V[C] \subset U$, where $W[p] \in \mathcal{M}(\sigma_p), V[C] \in \mathcal{M}(\sigma)$ and $\sigma_p \in M$. Thus $(\sigma_p, \sigma) \in U^*$ and $(\sigma \times M) \cap U^* \neq \phi$.

The above result shows that $(X^*, \mathcal{U}^*, \delta^*)$ is complete; for if \mathcal{F} is any Cauchy filter in X^* , then \mathcal{F} is contained in a Cauchy ultrafilter. This ultrafilter generates a Cauchy cluster which, by Theorm 2.7., must be a point cluster σ_{x_0} for some $x_0 \in X^*$. Clearly x_0 is a cluster point of the Cauchy filter \mathcal{F} , and thus \mathcal{F} converges to x_0 .

Finally, we remark that every Cauchy cluster in X is generated by a Cauchy ultrafilter containing the neighborhood filter of some point in X^* . (If the point is in $X^* - X$, consider the trace of its neighborhood filter on X.) Hence Definition 2.1. is equivalent to: a cluster is Cauchy iff it is generated by a Cauchy ultrafilter.

References

- V. A. Efremovič, Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341– 343.
- [2] V. A. Efremovič, The geometry of proximity I, Mat. Sb. **31**(73) (1952), 189–200.
- [3] Y. M. Smirov, On proximity spaces, Mat. Sb. 31(73) (1952), 543–574.
- [4] Y. M. Smirov, On proximity spaces, Mat. Sb. **31**(73), 543–574(in Russian); English translation in Am. math. Soc Transl. Ser. 2, **38** (1972), 5–35; MR 14, 1107.
- [5] S. Leader, On Products of proximity spaces, Math. Ann, 154 (1964), 185–194.
- [6] C. Y. Kim, On the R-Proximities, Yonsei Nochong, Vol 13 (1976), 1–5.
- [7] Tadir Huasin, Topology and Maps, Mcmaseter University Hamilton, 1977.
- [8] S. H. Han, The cartesian products on extended Jiang subgroup, J, of Kangweon-Kyungki Math. 2 (1994), 73–77.
- [9] S. H. Han, Product space and quotient space in K₀-proximity spaces, J, of Kangweon-Kyungki Math. 1 (2002), 59–66.
- [10] S. H. Han, K_0 -proximity induced by uniformity, J, of Kangweon-Kyungki Math. 1 (2003), 45–49.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

E-mail: hansong@kangwon.ac.kr