C^{∞}-REGULARITY OF INTERFACE OF SOME ONE-DIMENSIONAL NONLINEAR DEGENERATE PARABOLIC EQUATIONS

Youngsang Ko and Jeonggil Cho

Abstract

We prove the regularity of a moving interface of the solutions of the initial value problem of equation (1.1) is C^{∞}.

1. Introduction

We consider the Cauchy problem of the form

$$
\begin{equation*}
u_{t}=\frac{\partial}{\partial x}\left(\frac{\partial u^{m}}{\partial x}\left|\frac{\partial u^{m}}{\partial x}\right|^{p-2}\right) \quad \text { in } \quad S=\left\{(x, t) \in \mathbb{R} \times \mathbb{R}^{+}\right\} \tag{1.1}
\end{equation*}
$$

where $m>0, p>1+\frac{1}{m}$.
Equations like (1.1) were studied many authors and arise in different physical situations, for the detail see [3]. An important quantity of the study of equation (1.1) is the local velocity of propagation $V=$ $-v_{x}\left|v_{x}\right|^{p-2}$, whose expression in terms of u can be obtained by writing the equation as a conservation law in the form

$$
u_{t}+(u V)_{x}=0 .
$$

In this way we get

$$
V=-v_{x}\left|v_{x}\right|^{p-2},
$$

where the nonlinear potential $v(x, t)$ is

$$
\begin{equation*}
v=\frac{m(p-1)}{m(p-1)-1} u^{m-\frac{1}{p-1}} \tag{1.2}
\end{equation*}
$$

and by a direct computation v satisfies

$$
\begin{equation*}
v_{t}=(m(p-1)-1) v\left|v_{x}\right|^{p-2} v_{x x}+\left|v_{x}\right|^{p} . \tag{1.3}
\end{equation*}
$$

Received February 28, 2004.
2000 Mathematics Subject Classification: 35J.
Key words and phrases: free boundary, C^{∞} regularity.

In [3], it was shown that V satisfies

$$
V_{x} \leq \frac{1}{(p-1)(m+1) t}
$$

which can also be written as

$$
\begin{equation*}
\left(v_{x}\left|v_{x}\right|^{p-2}\right)_{x} \geq-\frac{1}{(p-1)(m+1) t} \tag{1.4}
\end{equation*}
$$

Without loss of generality, we may consider the case where u_{0} vanishes on \mathbb{R}^{-}and is a continuous positive function, at least, on an interval $(0, a)$ with $a>0$. Let

$$
P[u]=\{(x, t) \in S: u(x, t)>0\}
$$

be the positivity set of a solution u. Then $P[u]$ is bounded to the left in (x, t)-plane by the left interface curve $x=\zeta(t)[3]$, where

$$
\zeta(t)=\inf \{x \in \mathbb{R}: u(x, t)>0\} .
$$

Moreover there is a time $t^{*} \in[0, \infty)$, called the waiting time, such that $\zeta(t)=0$ for $0 \leq t \leq t^{*}$ and $\zeta(t)<0$ for $t>t^{*}$. It is shown [3] that t^{*} is finite(possibly zero) and $\zeta(t)$ is a nonincreasing C^{1} function on $\left(t^{*}, \infty\right)$. Actually it is shown that $\zeta^{\prime}(t)<0$ for every $t>t^{*}$, i.e., a moving interface never stop.

For the interface of the porous medium equation

$$
\left\{\begin{array}{lll}
u_{t}=\triangle\left(u^{m}\right) & \text { in } & \mathbb{R}^{n} \times[0, \infty), \\
u(x, 0)=u_{0} & \text { on } & \mathbb{R}^{n}
\end{array}\right.
$$

much more is known. D. G. Aronson and J. L. Vazquez [2] showed the interfaces are smooth after the waiting time. S. Angenent [1] showed that the interfaces are real analytic after the waiting time.

On the other hand much less is known for the equation (1.1). For dimensions $n \geq 2$, Zhao Junning [6] showed, under some nondegeneracy conditions on the initial data, the interface is Lipschitz continuous and we [4] improved this result, showing that, under the same hypotheses, the interface is a $C^{1, \alpha}$ surface after some time.

In this paper we show the interfaces of the solutions of (1.1) are smooth after the waiting time. In establishing C^{∞} regularity of the interfaces, we follow the ideas of Aronson and Vazquez. They showed the C^{∞} regularity by establishing the bounds for $v^{(k)}$ for $k \geq 2$, where $v=\frac{m}{m-1} u^{m-1}$ represents the pressure of the gas flow through a porous medium, while u represents the density.

2. The Upper and Lower Bound for $v_{x x}$

Let $q=\left(x_{0}, t_{0}\right)$ be a point on the left interface, so that $x_{0}=\zeta\left(t_{0}\right)$, $v\left(x, t_{0}\right)=0$ for all $x \leq \zeta\left(t_{0}\right)$, and $v\left(x, t_{0}\right)>0$ for all sufficiently small $x>\zeta\left(t_{0}\right)$. We assume the left interface is moving at q. Thus $t_{0}>t^{*}$. We shall use the notation
$R_{\delta, \eta}=R_{\delta, \eta}\left(t_{0}\right)=\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)<x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}$.
Proposition 2.1. Let q be the point as above. Then there exist positive constants C, δ and η depending only on p, q, m and u such that

$$
v_{x x} \geq C \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Proof. From (1.4) we have, $v_{x x} \geq-\frac{1}{(m+1)(p-1)^{2}\left|v_{x}\right|^{p-2} t}$. But from Lemma 4.4 in [3] v_{x} is bounded away and above from zero near the interface where $u(x, t)>0$.

Proposition 2.2. Let $q=\left(x_{0}, t_{0}\right)$ be as before. Then there exist positive constants C_{2}, δ and η depending only on p, q and u such that

$$
v_{x x} \leq C_{2} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Proof. From Theorem 2 and Lemma 4.4 in [3] we have

$$
\begin{equation*}
\zeta^{\prime}\left(t_{0}\right)=-v_{x}\left|v_{x}\right|^{p-2}=-v_{x}^{p-1}=-a \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{t}=\left|v_{x}\right|^{p} \tag{2.2}
\end{equation*}
$$

on the moving part of the interface $\left\{x=\zeta(t), t>t^{*}\right\}$. Choose $\epsilon>0$ satisfying

$$
\begin{equation*}
(p-1) a-[4 m(p-1)+p-2] \epsilon \geq 2 \mu(a+\epsilon) \epsilon \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}} \geq 2|p-3|(a+\epsilon)^{\frac{1}{p-1}} \epsilon \tag{2.4}
\end{equation*}
$$

where $\mu=2\{M(2 p-3)+p(p-1)\}$. Then by Theorem 2 in [3], there exists a $\delta=\delta(\epsilon)>0$ and $\eta=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{\delta, \eta} \subset P[u]$,

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}<v_{x}<(a+\epsilon)^{\frac{1}{p-1}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v v_{x x} \leq(a-\epsilon)^{\frac{2}{p-1}} \epsilon \tag{2.6}
\end{equation*}
$$

in $R_{\delta, \eta}$. Then we have

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}(x-\zeta)<v(x, t)<(a+\epsilon)^{\frac{1}{p-1}}(x-\zeta) \tag{2.7}
\end{equation*}
$$

in $R_{\delta, \eta}$ and

$$
\begin{equation*}
-(a+\epsilon)<\zeta^{\prime}(t)<-(a-\epsilon) \quad \text { in } \quad\left[t_{1}, t_{2}\right] \tag{2.8}
\end{equation*}
$$

where $t_{1}=t_{0}-\eta$ and $t_{2}=t_{0}+\eta$. We set

$$
\begin{equation*}
\zeta^{*}(t)=\zeta\left(t_{1}\right)-b\left(t-t_{1}\right) \tag{2.9}
\end{equation*}
$$

where $b=a+2 \epsilon$. Then clearly $\zeta(t)>\zeta^{*}(t)$ in $\left(t_{1}, t_{2}\right]$.
Next, set $M=m(p-1)-1$. Then on $P[u], w \equiv v_{x x}$ satisfies

$$
\begin{aligned}
L(w)= & w_{t}-M v\left|v_{x}\right|^{p-2} w_{x x}-3(p-2) M v\left|v_{x}\right|^{p-4} v_{x} w w_{x} \\
& -\{2 M+p\}\left|v_{x}\right|^{p-2} v_{x} w_{x}-\{M(2 p-3)+p(p-1)\}\left|v_{x}\right|^{p-2} w^{2} \\
& -(p-2) M(p-3) v\left|v_{x}\right|^{p-4} w^{3} .
\end{aligned}
$$

We shall construct a barrier for w in $R_{\delta, \eta}$ of the form

$$
\phi(x, t) \equiv \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)},
$$

where α and β will be decided later.
By a direct computation, we have

$$
\begin{aligned}
L(\phi)= & \frac{\alpha}{(x-\zeta)^{2}}\left\{\zeta^{\prime}-M v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta}+[2 M+p]\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-M v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta^{*}}+[2 M+p]\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& -[M(2 p-3)+p(p-1)]\left|v_{x}\right|^{p-2} \phi^{2}+G
\end{aligned}
$$

where

$$
\begin{aligned}
G= & -3(p-2) M v\left|v_{x}\right|^{p-4} v_{x} \phi \phi_{x}-(p-2) M(p-3) v\left|v_{x}\right|^{p-4} \phi^{3} \\
= & (p-2) M v\left|v_{x}\right|^{p-4} \times \\
& \phi\left(3 v_{x}\left[\frac{\alpha}{(x-\zeta)^{2}}+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\right]-(p-3)\left[\frac{\alpha}{x-\zeta}+\frac{\beta}{x-\zeta^{*}}\right]^{2}\right) .
\end{aligned}
$$

If we choose α and β satisfying

$$
v_{x} \geq|p-3| \max (\alpha, \beta)
$$

then $G \geq 0$ in $R_{\delta, \eta}$. Now set $\bar{A}=\frac{\alpha}{(x-\zeta)^{2}}$ and $\bar{B}=\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}$. Then we have

$$
\begin{aligned}
L(\phi) \geq & \bar{A}\left\{(p-1) a-[4 m(p-1)+p-3] \epsilon-\mu(a+\epsilon)^{\frac{p-2}{p-1}} \alpha\right\} \\
& +\bar{B}\left\{(p-1) a-[4 m(p-1)+p-2] \epsilon-\mu(a+\epsilon)^{\frac{p-2}{p-1}} \beta\right\}
\end{aligned}
$$

where μ is as before. Set

$$
0<\alpha \leq \min \left\{\frac{(a-\epsilon)^{\frac{1}{p-1}}}{|p-3|}, \frac{(p-1) a-[4 m(p-1)+p-3] \epsilon}{\mu(a+\epsilon)^{\frac{p-2}{p-1}}}\right\}=\alpha_{0}
$$

and

$$
\begin{equation*}
\beta=\min \left\{\frac{(a-\epsilon)^{\frac{1}{p-1}}}{|p-3|}, \frac{(p-1) a-[4 m(p-1)+p-2] \epsilon}{\mu(a+\epsilon)^{\frac{p-2}{p-1}}}\right\} . \tag{2.10}
\end{equation*}
$$

Then $L(\phi) \geq 0$ in $R_{\delta, \eta}$ for all $\alpha \in\left(0, \alpha_{0}\right]$ and β.
Let us now compare w and ϕ on the parabolic boundary of $R_{\delta, \eta}$. In view of (2.6) and (2.7) we have

$$
v_{x x}<\frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta} \quad \text { in } \quad R_{\delta, \eta}
$$

and in particular

$$
v_{x x}(\zeta(t)+\delta, t) \leq \frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{\delta} \text { in }\left[t_{1}, t_{2}\right] .
$$

By the mean value theorem and (2.8) we have for some $\tau \in\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
\zeta(t)+\delta-\zeta^{*}(t) & =\delta+(a+2 \epsilon)\left(t-t_{1}\right)+\zeta^{\prime}(\tau)\left(t-t_{1}\right) \\
& \leq \delta+3 \epsilon\left(t-t_{1}\right) \leq \delta+6 \epsilon \eta .
\end{aligned}
$$

Now set

$$
\eta \equiv \min \{\eta(\epsilon), \delta(\epsilon) / 6 \epsilon\} .
$$

Since ϵ satisfies (2.3), (2.4) and $\beta \leq \alpha_{0}$ it follows that

$$
\phi(\zeta+\delta, t) \geq \frac{\beta}{2 \delta} \geq \frac{(a+\epsilon)^{\frac{1}{p-1}}}{\delta} \epsilon \geq v_{x x} \quad \text { on } \quad\left[t_{1}, t_{2}\right] .
$$

Moreover

$$
\phi\left(x, t_{1}\right) \geq \frac{\beta}{x-\zeta\left(t_{1}\right)}>\frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta\left(t_{1}\right)}>v_{x x}\left(x, t_{1}\right) \quad \text { on } \quad\left(\zeta\left(t_{1}\right), \zeta\left(t_{1}\right)+\delta\right] .
$$

Let $\Gamma=\left\{(x, t) \in \mathbb{R}^{2}: x=\zeta(t), t_{1} \leq t \leq t_{2}\right\}$. Clearly Γ is a compact subset of \mathbb{R}^{2}. Fix $\alpha \in\left(0, \alpha_{0}\right)$. For each point $s \in \Gamma$ there is an open ball B_{s} centered at s such that

$$
\left(v v_{x x}\right)(x, t) \leq \alpha(a-\epsilon)^{\frac{1}{p-1}} \quad \text { in } \quad B_{s} \cap P[u] .
$$

In view of (2.7) we have

$$
\phi(x, t) \geq \frac{\alpha}{x-\zeta} \geq v_{x x}(x, t) \quad \text { in } \quad B_{s} \cap P[u] .
$$

Since Γ can be covered by a finite number of these balls it follows that there is a $\gamma=\gamma(\alpha) \in(0, \delta)$ such that

$$
\phi(x, t) \geq w(x, t) \quad \text { in } \quad R_{\gamma, \eta} .
$$

Thus for every $\alpha \in\left(0, \alpha_{0}\right), \phi$ is a barrier for w in $R_{\delta, \eta}$. By the comparison principle for parabolic equations [5] we conclude that

$$
v_{x x}(x, t) \leq \frac{\alpha}{x-\zeta}+\frac{\beta}{x-\zeta^{*}} \quad \text { in } \quad R_{\delta, \eta},
$$

where β is given by (2.10) and $\alpha \in\left(0, \alpha_{0}\right)$ is arbitrary. Now let $\alpha \downarrow 0$ to obtain

$$
v_{x x}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } \quad R .
$$

3. Bounds for $\left(\frac{\partial}{\partial x}\right)^{3} v$

In this section we find the estimates of $v^{(3)} \equiv\left(\frac{\partial}{\partial x}\right)^{3} v$. By a direct computation we have,

$$
\begin{align*}
L_{3}\left(v^{(3)}\right)= & v_{t}^{(3)}-M v v_{x}^{p-2} v_{x x}^{(3)}-(A+B) v_{x}^{(3)}-C v^{(3)}-D\left(v^{(3)}\right)^{2} \\
1) & -E v_{x}^{p-3} v_{x x}^{3}-M(p-2)(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}=0 \tag{3.1}
\end{align*}
$$

where

$$
\begin{aligned}
A= & M v_{x}^{p-1}+M(p-2) v v_{x}^{p-3} v_{x x}, \\
B= & (2 M+p) v_{x}^{p-1}+3 M(p-2) v v_{x}^{p-3} v_{x x}, \\
C= & v_{x x} v_{x}^{p-2}\{(2 M+p)(p-1)+2[M(2 p-3)+p(p-1)] \\
& \left.+6 M(p-2)(p-3) v v_{x}^{-2} v_{x x}+3 M(p-2)\right\}, \\
D= & 3 M(p-2) v v_{x}^{p-3}
\end{aligned}
$$

and

$$
E=[M(2 p-3)+p(p-1)](p-2)+M(p-2)(p-3)
$$

Suppose that $q=\left(x_{0}, t_{0}\right)$ is a point on the left interface for which (2.1) holds. Fix $\epsilon \in(0, a)$ and take $\delta_{0}=\delta_{0}(\epsilon)>0$ and $\eta_{0}=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{0} \equiv R_{\delta_{0}, \eta_{0}}\left(t_{0}\right) \subset P[u]$ and (2.6) holds. Thus we also have (2.7) and (2.8) in R_{0}. Then by rescaling and interior estimate we have

Proposition 3.1. There are constants $K \in \mathbb{R}^{+}, \delta \in\left(0, \delta_{0}\right)$, and $\eta \in\left(0, \eta_{0}\right)$ depending only on m, p, q and C_{2} such that

$$
\left|v^{(3)}(x, t)\right| \leq \frac{K}{x-\zeta(t)} \quad \text { in } \quad R_{\delta, \eta}
$$

Proof. Set

$$
\delta=\min \left\{\frac{2 \delta_{0}}{3}, 2 s \eta_{0}\right\}, \quad \eta=\eta_{0}-\frac{\delta}{4 s},
$$

and define

$$
R(\bar{x}, \bar{t}) \equiv\left\{(x, t) \in \mathbb{R}^{2}:|x-\bar{x}|<\frac{\lambda}{2}, \bar{t}-\frac{\lambda}{4 s}<t \leq \bar{t}\right\}
$$

for $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$, where $s=a+\epsilon$ and $\lambda=\bar{x}-\zeta(\bar{t})$. Then $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ implies that $R(\bar{x}, \bar{t}) \subset R_{0}$. Since $\delta_{0} \geq \frac{3 \delta}{2}, \lambda<\delta$ and ζ is nonincreasing, we have

$$
t_{0}-\eta_{0}=t_{0}-\eta-\frac{\lambda}{4 s}<t<t_{0}+\eta<t_{0}+\eta_{0}
$$

and

$$
\begin{gathered}
\bar{x}-\frac{\lambda}{2}=\bar{x}-\frac{\bar{x}+\zeta(\bar{t})}{2}=\frac{\bar{x}+\zeta(\bar{t})}{2}>\zeta\left(t_{0}+\eta_{0}\right) \\
\zeta\left(t_{0}-\eta\right)+\delta+\frac{\lambda}{2}<\zeta\left(t_{0}-\eta_{0}\right) .
\end{gathered}
$$

Also observe that for each $(\bar{x}, \bar{t}) \in R_{\delta, \eta}, R(\bar{x}, \bar{t})$ lies to the right of the line $x=\zeta(\bar{t})+s(\bar{t}-t)$. Next set $x=\lambda \xi+\bar{x}$ and $t=\lambda \tau+\bar{t}$. The function

$$
W(\xi, \tau) \equiv v_{x x}(\lambda \xi+\bar{x}, \lambda \tau+\bar{t})=v_{x x}(x, t)
$$

satisfies the equation

$$
\begin{align*}
W_{\tau}= & \left\{M \frac{v}{\lambda} v_{x}^{p-2} W_{\xi}+(2 M+p) v_{x}^{p-1} W\right\}_{\xi} \\
& +\left[2 M(p-2) v v_{x}^{p-3} v_{x x}-M v_{x}^{p-1}\right] W_{\xi} \tag{3.2}\\
& +\lambda\left[M(p-2)(p-3) v v_{x}^{p-4}\left(v_{x x}\right)^{3}-M v_{x}^{p-2}\left(v_{x x}\right)^{2}\right]
\end{align*}
$$

in the region

$$
B \equiv\left\{(\xi, \tau) \in \mathbb{R}^{2}:|\xi| \leq \frac{1}{2},-\frac{1}{4 s}<\tau \leq 0\right\},
$$

and $|W| \leq C_{2}$ in B. In view of (2.7) and (2.8)

$$
(a-\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda} \leq \frac{v(x, t)}{\lambda} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda}
$$

and

$$
\zeta(\bar{t}) \leq \zeta(t) \leq \zeta(\bar{t})+s(\bar{t}-t) \leq \zeta(\bar{t})+\frac{\lambda}{4}
$$

Therefore

$$
\frac{\lambda}{4}=\bar{x}-\frac{\lambda}{2}-\zeta(\bar{t})-\frac{\lambda}{4} \leq x-\zeta(t) \leq \bar{x}+\frac{\lambda}{2}-\zeta(\bar{t})=\frac{3 \lambda}{2}
$$

which implies

$$
\frac{(a-\epsilon)^{\frac{1}{p-1}}}{4} \leq \frac{v}{\lambda} \leq \frac{3(a+\epsilon)^{\frac{1}{p-1}}}{2} .
$$

Hence by (2.5) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [5]. Thus we conclude that there exists a constant $K=K\left(a, m, p, C_{2}\right)>0$ such that

$$
\left|\frac{\partial}{\partial \xi} W(0,0)\right| \leq K
$$

that is,

$$
\left|v^{(3)}(\bar{x}, \bar{t})\right| \leq \frac{K}{\lambda} .
$$

Since $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ is arbitrary, this proves the proposition.

We now turn to the barrier construction. If $\gamma \in(0, \delta)$ we will use the notation
$R_{\delta, \eta}^{\gamma}=R_{\delta, \eta}^{\gamma}\left(t_{0}\right) \equiv\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)+\gamma \leq x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}$.
Proposition 3.2. Let $R_{\delta_{1}, \eta_{1}}$ be the region constructed in the proof of Proposition 2.2 with

$$
\begin{equation*}
0<\delta_{1}<\frac{(p-1) a^{\frac{1}{p-1}}}{12 M(p-2) K} \tag{3.3}
\end{equation*}
$$

For $(x, t) \in R_{\delta_{1}, \eta_{1}}^{\gamma}$, let

$$
\begin{equation*}
\phi_{\gamma}(x, t) \equiv \frac{\alpha}{x-\zeta(t)-\gamma / 3}+\frac{\beta}{x-\zeta^{*}(t)} \tag{3.4}
\end{equation*}
$$

where ζ^{*} is given by (2.9), and α and β are positive constant less than $K / 2$. Then there exist $\delta \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ depending only on a, m, p and C_{2} such that

$$
L_{3}\left(\phi_{\gamma}\right) \geq 0 \quad \text { in } \quad R_{\delta, \eta}^{\gamma}
$$

for all $\gamma \in(0, \delta)$.
Proof. Choose ϵ such that

$$
\begin{equation*}
0<\epsilon<\frac{(p-1) a}{13 p-23} . \tag{3.5}
\end{equation*}
$$

There exist $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ such that (2.5), (2.7) and (2.8) hold in $R_{\delta_{2}, \eta}$. Fix $\gamma \in\left(0, \delta_{2}\right)$. For $(x, t) \in R_{\delta_{2}, \eta}^{\gamma}$, we have

$$
\begin{aligned}
L_{3}\left(\phi_{3}\right)= & \frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{\zeta^{\prime}-\frac{2 M v v_{x}^{p-2}}{x-\zeta-\gamma / 3}+A+B\right\} \\
& +\frac{\alpha}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-\frac{2 M v v_{x}^{p-2}}{x-\zeta^{*}}+A+B\right\}-C \phi_{3} \\
& -D\left(\phi_{3}\right)^{2}-E v_{x}^{p-3} v_{x x}^{3}-M(p-2)(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}
\end{aligned}
$$

where A, B, C, D, E and M are as before.
From (2.7), together with the fact that $x-\zeta^{*} \geq x-\zeta-\gamma / 3$ we have

$$
\begin{aligned}
\frac{v}{x-\zeta^{*}} & \leq \frac{v}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{\gamma}{\gamma-\gamma / 3} \\
& =\frac{3}{2}(a+\epsilon)^{\frac{1}{p-1}}
\end{aligned}
$$

From (3.3), we have

$$
\begin{equation*}
D \alpha, D \beta<\frac{D K}{2}<D K \leq \frac{(p-1) a}{4}+\frac{(p-1) \epsilon}{4} . \tag{3.6}
\end{equation*}
$$

Then since $|C|$ is bounded and from (2.5) and (2.7), we have

$$
\begin{aligned}
L_{3}\left(\phi_{3}\right) & \geq \frac{\alpha}{Y^{2}}\left\{\frac{(p-1) a}{2}-\frac{3 p+12 M+1}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{Y}{\alpha}\right)\right\} \\
+ & \frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\frac{(p-1) a}{2}-\frac{3 p+12 M-1}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{x-\zeta^{*}}{\beta}\right)\right\}
\end{aligned}
$$

where $Y=x-\zeta-\gamma / 3$ and $\bar{E}=|E| v_{x}^{p-3} v_{x x}^{3}$. Since ϵ satisfies (3.5) we can choose $\delta=\delta_{2}\left(\epsilon, a, m, p, C_{2}\right)>0$ so small that $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$.

Remark 3.1. From (3.6) the Proposition 3.2 will be true for any $\alpha, \beta \in$ $(0, K)$.

Proposition 3.3. (Barrier Transformation). Let δ and η be as in Proposition 3.2 with the additional restriction that

$$
\begin{equation*}
\eta<\frac{\delta}{6 \epsilon}, \tag{3.7}
\end{equation*}
$$

where ϵ is as in Proposition 3.2. Suppose that for some nonnegative constant β

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{3.8}
\end{equation*}
$$

Then $v^{(3)}$ also satisfies

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{2 \alpha / 3}{x-\zeta(t)}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{3.9}
\end{equation*}
$$

Proof. By Remark 3.1, for any $\gamma \in(0, \delta)$ since $\beta+2 \alpha / 3 \leq K$ the function

$$
\phi_{3}(x, t)=\frac{2 \alpha / 3}{x-\zeta-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}}
$$

satisfies $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$. On the other hand, on the parabolic boundary of $R_{\delta, \eta}^{\gamma}$ we have $\phi_{3} \geq v^{(3)}$. In fact, for $t=t_{1}$ and $\zeta_{1}+\gamma \leq x \leq \zeta_{1}+\delta$, with $\zeta_{1}=\zeta\left(t_{1}\right)$, we have

$$
\phi_{3}\left(x, t_{1}\right)=\frac{2 \alpha}{x-\zeta_{1}-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta_{1}}>\frac{4 \alpha / 3}{x-\zeta_{1}}+\frac{\beta}{x-\zeta_{1}}>v^{(3)}\left(x, t_{1}\right)
$$

while for $x=\zeta+\delta$ and $t_{1} \leq t \leq t_{2}$ we get, in view of (3.7),

$$
\begin{aligned}
\phi_{3}(\zeta+\delta, t) & \geq \frac{2 \alpha / 3}{\delta-\gamma / 3}+\frac{\beta}{\zeta+\delta-\zeta^{*}}+\frac{2 \alpha / 3}{\delta+6 \epsilon \eta} \\
& \geq \frac{2 \alpha / 3}{\delta}+\frac{\delta}{\zeta+\delta-\zeta^{*}}+\frac{\alpha / 3}{\delta} \geq v^{(3)}(\zeta+\delta, t)
\end{aligned}
$$

Finally, for $x=\zeta+\gamma, t_{1} \leq t \leq t_{2}$ we have

$$
\phi_{3}(\zeta+\delta, t)=\frac{2 \alpha / 3}{\gamma-\gamma / 3}+\frac{\beta+2 \alpha / 3}{\zeta+\gamma-\zeta^{*}} \geq \frac{\alpha}{\gamma}+\frac{\beta}{\zeta+\gamma-\zeta^{*}} \geq v^{(3)}(\zeta+\gamma, t)
$$

By the comparison principle we get

$$
\phi_{3} \geq v^{(3)} \quad \text { in } \quad R_{\delta, \eta}^{\gamma}
$$

for any $\gamma \in(0, \delta)$, and (3.9) follows by letting $\gamma \downarrow 0$.
Proposition 3.4. Let $q=\left(x_{0}, t_{0}\right)$ be a point on the interface for which (2.1) holds. Then there exist constants C_{3}, δ and η depending only on p, q and u such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{3} v\right| \leq C_{3} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Proof. By Proposition 3.1 we have, by letting $\alpha=0$,

$$
v^{(3)}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Even though the equation (3.1) is not linear for $v^{(3)}$, a lower bound can be obtained in a similar way.

4. Main Result

In this section we prove the interface is a C^{∞} function in $\left(t^{*}, \infty\right)$. First we find the estimates of the derivatives of the form

$$
v^{(j)} \equiv\left(\frac{\partial}{\partial x}\right)^{j} v
$$

for $j \geq 4$. For the porous medium equation, we have [2] the following equation:

$$
\begin{aligned}
L_{j} v^{(j)} \equiv & v_{t}^{(j)}-(m-1) v v_{x x}^{(j)}-(2+j(m-1)) v_{x} v_{x}^{(j)}-c_{m j} v_{x x} v^{(j)} \\
& -\sum_{l=3}^{j^{*}} d_{m j}^{l} v^{(l)} v^{(j+2-l)}=0
\end{aligned}
$$

for $j \geq 3$ in $P[u]$, where $j^{*}=[j / 2]+1$, and the $c_{m j}$ and $d_{m j}^{l}$ are constants which depend only on their indices, but whose precise values are irrelevant. Note that L_{j} is linear in $v^{(j)}$. On the other hand for the p-Laplacian equation by a direct computation we have the following equation for $j \geq 4$,

$$
\begin{align*}
L_{j} v^{(j)}= & v_{t}^{(j)}-M v v_{x}^{p-2} v_{x x}^{(j)}-((j-2) A+B) v_{x}^{(j)}-C_{p j} v^{(j)} \tag{4.1}\\
& -F\left(v, v_{x}, \ldots, v^{(j-1)}\right)=0
\end{align*}
$$

where A, B and M are as before, and $C_{p j}$ involves only v and derivatives of order $<j$. Note that equation (4.1) is linear in $v^{(j)}$. We also follow the method in [2]. Hence our result is

Proposition 4.1. Let $q=\left(x_{0}, t_{0}\right)$ be a point on the interface for which (2.1) holds. For each integer $j \geq 2$ there exist constants C_{j}, δ and η depending only on j, m, p, q and u such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{j} v\right| \leq C_{j} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

The proof also proceeds by induction on j. Suppose that $q=\left(x_{0}, t_{0}\right)$ is a point on the left interface for which (2.1) holds. Fix $\epsilon \in(0, a)$ and take $\delta_{0}=\delta_{0}(\epsilon)>0$ and $\eta_{0}=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{0} \equiv$ $R_{\delta_{0}, \eta_{0}}\left(t_{0}\right) \subset P[u]$ and (2.6) holds. Thus we also have (2.7) and (2.8) in R_{0}. Assume that there are constants $C_{k} \in \mathbb{R}^{+}$for $k=3, \ldots, j-1$ such that

$$
\begin{equation*}
\left|v^{(k)}\right| \leq C_{k} \quad \text { on } \quad R_{0} \quad \text { for } \quad k=2, \ldots, j-1 . \tag{4.2}
\end{equation*}
$$

Observe that by Propositions 2.1, 2.2 and 3.4, (4.2) holds for $k=2$ and $k=3$.

By rescaling and interior estimates, we have
Proposition 4.2. There are constants $K \in \mathbb{R}^{+}, \delta \in\left(0, \delta_{0}\right)$, and $\eta \in\left(0, \eta_{0}\right)$ depending only on p, q and C_{k} for $k \in[2, j-1]$ with $j \geq 4$
such that

$$
\left|v^{(j)}(x, t)\right| \leq \frac{K}{x-\zeta(t)} \quad \text { in } \quad R_{\delta, \eta}
$$

Proof. Set

$$
\begin{gathered}
\delta=\min \left\{\frac{2 \delta_{0}}{3}, 2 s \eta_{0}\right\}, \\
\eta=\eta_{0}-\frac{\delta}{4 s},
\end{gathered}
$$

and define

$$
R(\bar{x}, \bar{t}) \equiv\left\{(x, t) \in \mathbb{R}^{2}:|x-\bar{x}|<\frac{\lambda}{2}, \bar{t}-\frac{\lambda}{4 s}<t \leq \bar{t}\right\}
$$

for $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$, where $s=a+\epsilon$ and $\lambda=\bar{x}-\zeta(\bar{t})$. Then $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ implies that $R(\bar{x}, \bar{t}) \subset R_{0}$. Since $\delta_{0} \geq \frac{3 \delta}{2}, \lambda<\delta$ and ζ is nonincreasing, we have

$$
t_{0}-\eta_{0}=t_{0}-\eta-\frac{\lambda}{4 s}<t<t_{0}+\eta<t_{0}+\eta_{0}
$$

and

$$
\begin{gathered}
\bar{x}-\frac{\lambda}{2}=\bar{x}-\frac{\bar{x}+\zeta(\bar{t})}{2}=\frac{\bar{x}+\zeta(\bar{t})}{2}>\zeta\left(t_{0}+\eta_{0}\right) \\
\zeta\left(t_{0}-\eta\right)+\delta+\frac{\lambda}{2}<\zeta\left(t_{0}-\eta_{0}\right) .
\end{gathered}
$$

Also observe that for each $(\bar{x}, \bar{t}) \in R_{\delta, \eta}, R(\bar{x}, \bar{t})$ lies to the right of the line $x=\zeta(\bar{t})+s(\bar{t}-t)$. Next set $x=\lambda \xi+\bar{x}$ and $t=\lambda \tau+\bar{t}$. The function

$$
V^{(j-1)}(\xi, \tau) \equiv v^{(j-1)}(\lambda \xi+\bar{x}, \lambda \tau+\bar{t})=v^{(j-1)}(x, t)
$$

satisfies the equation

$$
\begin{align*}
V_{\tau}^{(j-1)}= & \left\{M \frac{v}{\lambda} v_{x}^{p-2} V_{\xi}^{(j-1)}+[(j-2) A+B] v_{x}^{p-1} V^{(j-1)}\right\}_{\xi} \\
3) & -\left[M v_{x}^{p-1}+M(p-2) v v_{x}^{p-3} v_{x x}+(j-2) A+B\right] V_{\xi}^{(j-1)} \tag{4.3}\\
& +\lambda\left[C_{p j}-\left((j-2) A_{x}+B_{x}\right)\right] V^{(j-1)}+\lambda F\left(v, \ldots, v^{(j-2)}\right.
\end{align*}
$$

in the region

$$
B \equiv\left\{(\xi, \tau) \in \mathbb{R}^{2}:|\xi| \leq \frac{1}{2},-\frac{1}{4 s}<\tau \leq 0\right\}
$$

and $\left|V^{(j-1)}\right| \leq C_{j-1}$ in B. In view of (2.7) and (2.8)

$$
(a-\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda} \leq \frac{v(x, t)}{\lambda} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda}
$$

and

$$
\zeta(\bar{t}) \leq \zeta(t) \leq \zeta(\bar{t})+s(\bar{t}-t) \leq \zeta(\bar{t})+\frac{\lambda}{4}
$$

Therefore

$$
\frac{\lambda}{4}=\bar{x}-\frac{\lambda}{2}-\zeta(\bar{t})-\frac{\lambda}{4} \leq x-\zeta(t) \leq \bar{x}+\frac{\lambda}{2}-\zeta(\bar{t})=\frac{3 \lambda}{2}
$$

which implies

$$
\frac{(a-\epsilon)^{\frac{1}{p-1}}}{4} \leq \frac{v}{\lambda} \leq \frac{3(a+\epsilon)^{\frac{1}{p-1}}}{2}
$$

Hence by (2.5) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Propositions 2.1, 2.2 and 3.4 and by (4.2) that $V^{(j-1)}$ satisfies all of the hypotheses of Theorem 5.3.1 of [5]. Thus we conclude that there exists a constant $K=K\left(a, m, p, C_{1}, \ldots, C_{j-1}\right)>0$ such that

$$
\left|\frac{\partial}{\partial \xi} V^{(j-1)}(0,0)\right| \leq K
$$

that is,

$$
\left|v^{(j)}(\bar{x}, \bar{t})\right| \leq \frac{K}{\lambda} .
$$

Since $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ is arbitrary, this proves the proposition.
We now turn to the barrier construction. If $\gamma \in(0, \delta)$ we will use the notation
$R_{\delta, \eta}^{\gamma}=R_{\delta, \eta}^{\gamma}\left(t_{0}\right) \equiv\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)+\gamma \leq x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}$.
Proposition 4.3. Let $R_{\delta_{1}, \eta_{1}}$ be the region constructed in the proof of Proposition 2.2. For $j \geq 4$ and $(x, t) \in R_{\delta_{1}, \eta_{1}}^{\gamma}$, let

$$
\begin{equation*}
\phi_{j}(x, t) \equiv \frac{\alpha}{x-\zeta(t)-\gamma / 3}+\frac{\beta}{x-\zeta^{*}(t)} \tag{4.4}
\end{equation*}
$$

where ζ^{*} is given by (2.9), and α and β are positive constant. Then there exist $\delta \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ depending only on $a, p, C_{1}, \ldots, C_{j-1}$ such that

$$
L_{j}\left(\phi_{j}\right) \geq 0 \quad \text { in } \quad R_{\delta, \eta}^{\gamma}
$$

for all $\gamma \in(0, \delta)$.

Proof. Choose ϵ such that

$$
\begin{equation*}
0<\epsilon<\frac{(3 M(j-3)+(j-2) p-1) a}{3 M(j-1)+(j-2) p+2} \tag{4.5}
\end{equation*}
$$

There exist $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ such that (2.5), (2.7) and (2.8) hold in $R_{\delta_{2}, \eta}$. Fix $\gamma \in\left(0, \delta_{2}\right)$. For $(x, t) \in R_{\delta_{2}, \eta}^{\gamma}$, we have

$$
\begin{aligned}
L_{j}\left(\phi_{j}\right) & =\frac{\alpha}{A^{*^{2}}}\left\{\zeta^{\prime}-\frac{2 M v v_{x}^{p-2}}{A^{*}}+(j-2) A+B-C_{p j} A^{*}+\frac{A^{* 2}}{\alpha} F\right\} \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-\frac{2 M v v_{x}^{p-2}}{x-\zeta^{*}}+(j-2) A+B-C_{p j}\left(x-\zeta^{*}\right)\right\}
\end{aligned}
$$

where $A, B, M, C_{p j}$ and F are as before and $A^{*}=x-\zeta-\gamma / 3$. From (2.7), together with the fact that $x-\zeta^{*} \geq x-\zeta-\gamma / 3$ we have

$$
\begin{aligned}
\frac{v}{x-\zeta^{*}} & \leq \frac{v}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{\gamma}{\gamma-\gamma / 3} \\
& =\frac{3}{2}(a+\epsilon)^{\frac{1}{p-1}}
\end{aligned}
$$

Then from (2.5), (2.7) and (4.2), we have

$$
\begin{aligned}
L_{j}\left(\phi_{j}\right) & \geq \frac{\alpha}{A^{*^{2}}}\{(3 M(j-3)+(j-2) p-1) a-(3 M(j-1) \\
& +(j-2) p+1) \epsilon-\delta_{2}\left(\left|C_{p j}\right|+\frac{\delta}{\alpha}|F|\right\}+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\{(3 M(j-3) \\
& +(j-2) p-1) a-(3 M(j-1)+(j-2) p+2) \epsilon-\delta_{2}\left(\left|C_{p j}\right|\right\}
\end{aligned}
$$

Since ϵ satisfies (4.5) we can choose $\delta=\delta_{2}\left(\epsilon, a, m, p, C_{2}\right)>0$ so small that $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$.

Hence we have the following proposition whose proof can be found in [2].

Proposition 4.4. (Barrier Transformation). Let δ and η be as in Proposition 4.3 with the additional restriction that

$$
\begin{equation*}
\eta<\frac{\delta}{6 \epsilon} \tag{4.6}
\end{equation*}
$$

where ϵ is as in Proposition 4.3. Suppose that for some nonnegative constant β

$$
\begin{equation*}
v^{(j)}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{4.7}
\end{equation*}
$$

Then $v^{(j)}$ also satisfies

$$
\begin{equation*}
v^{(j)}(x, t) \leq \frac{2 \alpha / 3}{x-\zeta(t)}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{4.8}
\end{equation*}
$$

Then as in [2], we can prove the C^{∞} regularity of the interface.

References

1. S. Angenent, Analyticity of the interface of the porous media equation after the waiting time, Proc. Amer. math. Soc. 102(1988), 329-336.
2. D. G. Aronson and J. L. Vazquez, Eventual C^{∞}-regularity and concavity for flows in one-dimensional porous media, Arch. Rational Mech. Anal. 99 (1987),no.4, 329-348.
3. J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in \mathbb{R} with power-like nonlinear diffusivity, Arch. Rational Mech. Anal. 103 (1988) 39-80.
4. Y. Ko, $C^{1, \alpha}$ regularity of interface of some nonlinear degenerate parabolic equations, Nonlinear Analysis 42 (2000), 1131-1160.
5. O. A. Ladyzhenskaya, N.A. Solonnikov and N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, 23, Amer. Math. Soc., Providence, R. I., 1968.
6. J. Zhao, Lipschitz continuity of the free boundary of some nonlinear degenerate parabolic equations, Nonlinear Anal. 28(6) (1997), 1047-1062.

Department of Mathematics
Kyonggi University, Suwon
Kyonggi-do, 442-760, Korea
E-mail: ysgo@kuic.kyonggi.ac.kr

