OSCILLATION AND NONOSCILLATION THEOREMS OF SOLUTIONS FOR SOME NONLINEAR DIFFERENTIAL EQUATIONS

RAKJOONG KIM

ABSTRACT. In this paper, we study oscillation and nonoscillation criteria of solutions for the following nonlinear differential equation

$$\left[\frac{1}{p(t)} (x'(t))^{\mu} \right]' + q(t)x(t)^{\mu} = 0.$$

where μ with $\mu \geq 1$ is a quotient of odd integers.

1. Introduction

The purpose of this paper is to study oscillatory or nonoscillatory properties of solutions of some differential equation

$$\left[\frac{1}{p(t)} (x'(t))^{\mu}\right]' + q(t)x(t)^{\mu} = 0$$
 (E)

where

- (C_1) the function $p \in C[t_0, \infty)$ is positive.
- (C_2) q(t) is positive for all $t \in [t_0, \infty)$.
- (C_3) μ with $\mu \geq 1$ is a quotient of odd integers.

In this paper we always define a function $\rho(t)$ as

$$\rho(t) = \int_{t_0}^t p(s)^{1/\mu} ds, \qquad t_0 \le t,$$

Received July 19, 2004.

2000 Mathematics Subject Classification: 34C10, 34C15.

Key words and phrases: Oscillatory, nonoscillatory solution, eventually negative.

156

and assume that

$$\int_{t_0}^{\infty} p(s)^{1/\mu} \, ds = \infty \tag{H_1}$$

and that

$$\int_{t_0}^{\infty} q(s) \, ds = \infty \tag{H_2}$$

By a solution of (E) is meant a function $x(t) \in C^2[T,\infty)$, $T \geq t_0$, satisfying $x'(t)^{\nu} \in C^1[T,\infty)$ and satisfying (E) for all $t \geq T$. There are many papers devoted to either oscillation or nonoscillation of solutions(See [1],[2],[5]-[8]). It will be always assumed that nonconstant solutions of (E) exist on some ray $[T,\infty)$, $T \geq t_0$. A solution x(t) is oscillatory if there exists a sequence $\{t_n\}_{n=1}^{\infty}$ of zeros of x(t) such that $t_n \to \infty$ as $n \to \infty$. Otherwise it is said to be nonoscillatory. Equation (E) is called oscillatory if all solutions are oscillatory.

2. Main Results

THEOREM 1. Let a function a(t) be positive, increasing and differentiable for $t \geq t_0$. Then under the assumption (H_1) the equation (E) is oscillatory if the inequality

$$\int^{\infty} \left[a(s)q(s) - \frac{a'(s)^{\mu+1}}{p(s)a(s)^{\mu}} \left(\frac{1}{\mu+1} \right)^{\mu+1} \right] ds = \infty$$
 (1)

is valid.

Proof. We assume that (E) is nonoscillatory. Then there exists a solution x(t) eventually of one sign. We may assume that x(t) > 0, $t \ge T$ for some $T \ge t_0$. The similar argument is valid for the case when x(t) is eventually negative. We define a function w(t) by

$$w(t) = \frac{a(t)}{p(t)} \frac{[x'(t)]^{\mu}}{x(t)^{\mu}}.$$
 (2)

Then

$$\frac{x'(t)}{x(t)} = \left[\frac{p(t)w(t)}{a(t)}\right]^{1\mu}.$$
 (3)

It follows that $\frac{1}{p(t)}[x'(t)]^{\mu}$ is decreasing.

We can easily show that

$$w(t) > 0 \tag{4}$$

for $t \geq T$. We have then from (2) and (3)

$$w'(t) = -a(t)q(t) + \frac{a'(t)}{a(t)}w(t) - \mu w(t) \left[\frac{p(t)w(t)}{a(t)}\right]^{1/\mu}$$

$$= -a(t)q(t) + \frac{a'(t)}{a(t)}w(t) - \mu \left[\frac{p(t)}{a(t)}\right]^{1/\mu}w(t)^{1+1/\mu}$$
(5)

We seek the maximum of

$$F(z,t) = \frac{a'(t)}{a(t)}z - \mu \left[\frac{p(t)}{a(t)}\right]^{1/\mu} z^{1+1/\mu}.$$

It is obvious that F has the maximum at

$$z_0 = \frac{a'(t)^{\mu}}{p(t)a(t)^{\mu-1}} \left(\frac{1}{\mu+1}\right)^{\mu}.$$

for all t. Thus we have

$$F(z,t) \le \frac{a'(t)^{\mu+1}}{p(t)a(t)^{\mu}} \left(\frac{1}{\mu+1}\right)^{\mu+1} \tag{6}$$

for all t. Therefore we obtain

$$w'(t) \le -a(t)q(t) + \frac{a'(t)^{\mu+1}}{p(t)a(t)^{\mu}} \left(\frac{1}{\mu+1}\right)^{\mu+1}.$$
 (7)

By means of (7) we have

$$w(t) \le w(T) - \int_{T}^{t} \left[a(s)q(s) - \frac{a'(s)^{\mu+1}}{p(s)a(s)^{\mu}} \left(\frac{1}{\mu+1} \right)^{\mu+1} \right] ds,$$
 (8)

which contradicts (4). Therefore our theorem is proved.

COROLLARY 1. Under the same assumptions as in theorem 1 the equation (E) is oscillatory if the inequality

$$\liminf_{t \to \infty} \left[p(s)q(s) \frac{a(s)^{\mu+1}}{a'(s)^{\mu+1}} - \left(\frac{1}{\mu+1}\right)^{\mu+1} \right] > 0 \tag{9}$$

is valid.

THEOREM 2. The equation (E) with $p(t) \equiv 1$ is oscillatory if the inequality

$$\int^{\infty} \left[s^{\mu} q(s) - \frac{1}{s} \left(\frac{\mu}{\mu + 1} \right)^{\mu + 1} \right] ds = \infty$$
 (10)

is valid.

Proof. In the proof of theorem 1 we choose functions $a(t) = t^{\mu}$ and p(t) = 1. Then it is obvious that

$$w'(t) \le -t^{\mu} q(t) + \frac{1}{t} \left(\frac{\mu}{\mu+1}\right)^{\mu+1}.$$
 (11)

The rest of proof is the same as in the proof of theorem 1. \Box

As a consequence we obtain the following result.

COROLLARY 2. The equation (E_1) is oscillatory if the inequality

$$\liminf_{t \to \infty} \left[t^{\mu+1} q(t) - \left(\frac{\mu}{\mu+1} \right)^{\mu+1} \right] > 0$$

is valid.

COROLLARY 3. Assume that (H_1) , (H_2) are valid. The equation (E) is oscillatory.

Proof. In the proof of theorem 1 we choose a function w(t) as follows

$$w(t) = \frac{x'(t)^{\mu}}{p(t) x(t)^{\mu}}.$$
 (12)

Since then w(t) > 0 for large t, it is obvious that

$$w'(t) = -q(t) - \mu p(t)^{1/\mu} w(t)^{1+1/\mu}$$

$$\leq -q(t).$$
(13)

Therefore our theorem follows.

THEOREM 3. Assume that (H_1) is valid and that $\int_{t_0}^{\infty} q(s) ds < \infty$. Then the following are equivalent

- (a) the equation (E) is nonoscillatory.
- (b) $\lim_{t\to\infty} w(t) = 0$ where w(t) is the same as given in (12).
- (c) There exist a $T \geq t_0$ and a continuous and positive function w(t) such that for $T \leq t$

$$w(t) = \int_{t}^{\infty} p(s)^{1/\mu} w(s)^{1+1/\mu} ds + \int_{t}^{\infty} q(s) ds.$$
 (14)

Proof. (a) \Longrightarrow (b): Assume that (a) is valid. There exist a $T \geq t_0$ and a solution x(t) of (E) such that x(t) > 0 for $t \geq T$. The similar argument is valid for the case when x(t) is eventually negative. It follows that x'(t) > 0 and that $x'(t)^{\mu}/p(t)$ is decreasing. Therefore we have

$$\lim_{t \to \infty} \frac{x'(t)^{\mu}}{p(t)} \ge 0.$$

Assume that

$$\lim_{t \to \infty} \frac{x'(t)^{\mu}}{p(t)} = \alpha > 0. \tag{15}$$

Since then there exists a $T_1 > T$ such that

$$x(t) \ge x(T_1) + \left(\frac{\alpha}{2}\right)^{1/\mu} \int_{T_1}^t p(s)^{1/\mu} ds$$
 (16)

160

we have

$$\lim_{t \to \infty} x(t) = \infty. \tag{17}$$

Therefore It follows that

$$\lim_{t \to \infty} w(t) \le \lim_{t \to \infty} \frac{x'(T)^{\mu}}{p(T)x(t)^{\mu}} = 0.$$
(18)

Assume that

$$\lim_{t \to \infty} \frac{x'(t)^{\mu}}{p(t)} = 0. \tag{19}$$

On the other hand, since x'(t) > 0, there exist a $T_2 > T$ and a constant c > 0 such that x(t) > c for $T_2 \le t$. Therefore It follows that

$$\lim_{t \to \infty} w(t) \le c^{\mu} \lim_{t \to \infty} \frac{x'(t)^{\mu}}{p(t)} = 0.$$
 (20)

Consequently (b) follows from (18) and (20).

(b) \Longrightarrow (c): Integrating from t to ∞ after differentiating w(t) we obtain (14).

 $(c)\Longrightarrow(a):$ Differentiating both sides of (14) we obtain (13). Then we have

$$x(t) = x(T) \exp \left[\int_{T}^{t} p(s)^{1/\mu} w(s)^{1/\mu} ds \right]$$

which is a nonoscillatory solution of (E).

We consider a differential equation of the type

$$\left[\frac{1}{P(t)} (y'(t))^{\mu}\right]' + Q(t)y(t)^{\mu} = 0$$
 (E_P)

where P(t) is continuous for $t \geq t_0$. Then we obtain the following comparison theorem.

Theorem 4. Assume that for $t \geq t_0$

$$0 \le p(t) \le P(t), \qquad q(t) \le Q(t) \tag{21}$$

and that the following are valid:

$$\int_{t_0}^{\infty} P(s)^{1/\mu} ds = \infty, \qquad \int_{t_0}^{\infty} Q(s) ds < \infty.$$
 (22)

Then if (E_P) has a positive solution, (E) has also a positive solution. Proof. Assume that (E_P) has a positive solution y(t). If we put

$$W(t) = \frac{y'(t)^{\mu}}{P(t)y(t)^{\mu}},$$

then it follows that W(t) > 0 and

$$W(t) = \int_{t}^{\infty} Q(s) ds + \mu \int_{t}^{\infty} P(s)^{1/\mu} W(s)^{1+1/\mu} ds.$$
 (23)

Consider a mapping K defined by

$$(Ku)(t) = \int_{t}^{\infty} q(s) \, ds + \mu \int_{t}^{\infty} p(s)^{1/\mu} u(s)^{1+1/\mu} \, ds$$

where

$$U = \{u(t) \in C^{2}[t_{0}, \infty) \mid 0 \le u(t) \le W(t)\}.$$

Then the mapping $K: U \to U$ is a compact mapping and K has a fixed point u(t) (see [3]). By means of theorem 3 (E) is nonoscillatory. Then if we choose $T > t_0$ such that x(T) > 0, a positive solution of (E) is of the form:

$$x(t) = x(T) \exp \left[\int_{T}^{t} p(s)^{1/\mu} u(s)^{1/\mu} ds \right].$$

We consider the equation [4]:

$$\left[\frac{1}{p(t)} (x'(t))^{\mu}\right]' + \rho(t)^{-\mu - 1} p(t)^{1/\mu} q(t) x(t)^{\mu} = 0.$$
 (E₁)

Put $x = \rho(t)^{\alpha}$. Then since $\rho'(t) = p(t)^{1/\mu}$, we obtain

$$\alpha^{\mu}(\alpha - 1)\mu + q(t) = 0. \tag{24}$$

It is easy to show that

$$-\alpha^{\mu}(\alpha - 1)\mu \le \left(\frac{\mu}{\mu + 1}\right)^{\mu + 1}$$

where the equality is valid at $\alpha = \frac{\mu}{\mu + 1}$. Therefore we obtain :

EXAMPLE. Let (H_1) be valid. Assume that q(t) is integrable on $[t_0, \infty)$.

(a) (E) is nonoscillatory if for large t

$$\rho(t)^{\mu+1}p(t)^{-1/\mu}q(t) \le \left(\frac{\mu}{\mu+1}\right)^{\mu+1}.$$
 (25)

(b) (E) is oscillatory if for large t

$$\rho(t)^{\mu+1}p(t)^{-1/\mu}q(t) > \left(\frac{\mu}{\mu+1}\right)^{\mu+1}.$$
 (26)

Proof. We note that equation

$$\left[\frac{1}{p(t)} \left(x'(t)\right)^{\mu}\right]' + \left(\frac{\mu}{\mu+1}\right)^{\mu} \rho(t)^{-\mu-1} p(t)^{1/\mu} x(t)^{\mu} = 0.$$
 (E₂)

has a positive solution $x = \rho(t)^{\mu/(\mu+1)}$. It is obvious that $\rho(t)^{-\mu-1}p(t)^{1/\mu}$ is integrable on $[t_0, \infty)$. If we put

$$Q(t) = \left(\frac{\mu}{\mu + 1}\right)^{\mu} \rho(t)^{-\mu - 1} p(t)^{1/\mu},$$

(a) follows from theorem 4. If (26) is valid, there is no real value α satisfying (24) for all t. Thus (b) holds.

References

- 1. J. Dzurina, Oscillation of a second order differential equation with mixed argument, Archivum Mathematicum(BRNO). Tomus 33 (1997), 309-314.
- 2. A. Elbert and T. Kusano, Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations, Acta Math. Hungar. **56** (1990), 325-336.
- T. Kusano and N. Yosida, Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl. 189 (1995), 115-127.
- 4. H. J. Li and C. C. Yeh, Nonoscillation Criteria for Second-Order Half-Linear Differential Equations, Appl. Math. Lett. 8. No 5 (1995), 63-70.
- 5. C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press. New York, 1968.
- 6. K. Takasi, Nonoscillation theorems for a class of quasilinear differential equations of second order, Jour. Math. Anal. and Appl. 189 (1995), 115-127.
- J. S. W. Wong, On Kamenev-Type Oscillation Theorems for Second-Order Differential Equations with Damping, Jour. Math. Anal. Appl. 258 (2001), 244-257.
- 8. P. S. Y. Wong and R. P. Agarwal, Oscillation theorems and existence of positive monotone solutions for second order nonlinear differential equations, Math. Comput. Modelling. 21 No 3 (1995), 63-84.

Department of Mathematics Hallym University Chunchon, Kangwon 200-702, Korea.

E-mail: rjkim@hallym.ac.kr