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PRICING AND HEDGING OPTIONS
IN AN EMPIRICAL ASSET MODEL

Jae-pill Oh

Abstract. Pricing and hedging strategy for European options of

jump-type asset models, which are derived from a stochastic differ-

ential equations, are discussed.

1. Introduction
In this paper, we think a jump-type asset model derived from canon-

ical stochastic differential equation(SDE). By this model, we discuss
option pricing and hedging problems.

In [1], we met the range interval problem of the prices of European
call option for the class of all possible measures which were equivalent
to given probability P and the asset model St; t ≥ 0 which was the
solution of 1-dimensional SDE:

dSt = St−[dZt + (e∆Zt − 1−∆Zt)], (1.1)

and whose driving process was a jump-type semimartingale:

Zt = bt +
∫ t

0

∫
|z|≤1

zÑp(dz, ds) +
∫ t

0

∫
|z|>1

zNp(dz, ds). (1.2).

As pointed out in [1], this asset model is very realistic in view of some
empirical sense if we look at the microstructure of stock price move-
ments.

In this paper, we deal an option price and an upper bound of the
range set of option prices. Further, we will think a hedging problem
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of option for this model. In section 2, we define our asset model by
the solution of canonical SDE. Also we summarize the range sets of
European call option prices for 1-dimensional model which is in [1].
In section 3, we think an option price for some equivalent measure Q,
and get the upper bound of option price set. In section 4, we define
value process, and study the hedging problems. In this section, we fix
a measure Q, which is equivalent to given probability P and makes
e−rtξt a martingale. We are not use Girsanov transformation to define
semimartingale for simplicity, and will omit the notation of Q.

2. Asset model
To study mathematical finance, in general, we define an asset model

which is defined from the notion of one of two kinds of assumptions. If
we think the prices and its derivatives for several periods, the return
Zt which is defined by Zt = log St − log St−1 is more reasonable, but
if we think for maturity(T ) only, the return Zt defined by Zt = (St −
St−1)/St−1 is more reasonable(c.f. [2]). In [1], we know that our model
is more realistic than the traditional model:

St = S0 exp(Zt), (2.1)

where Zt is a corresponding return process. To study in mathematical
logic, we will introduce our model from SDE theory.

Let (Ω,F , P ) be a probability space carrying a filtration Ft; t ∈
[0,∞) of a right continuous increasing family of sub-σ-fields of F . Let
Zt; t ≥ 0 be an R-valued cadlag semimartingale defined on (Ω,F , P ).
For each Zt, we define a Poisson point process Np over R× (0, T ] by

Np(U, (s, t]) =
∑

s<r≤t

XU (∆Zr), ∆Zr = Zr − Zr−,

where U is a Borel subset of R excluding {0}. Then there exists
a unique predictable process N̂p(U, (0, t]) such that Ñp(U, (0, t]) =
Np(U, (0, t])− N̂p(U, (0, t]) is a localmartingale if infz∈U |z| > 0.

Let Zt; t ≥ 0 be a jump-type semimartingale of the form:

Zt = bt +
∫

U

zÑp(dz, t) +
∫

Uc

zNp(dz, t), (2.2)
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where U = {z ∈ R; |z| ≤ 1}, Np(dz, dt) is a Poisson random measure on
R × [0,∞) with intensity measure N̂p(dz, dt) = ν(dz)dt. The measure
ν is a Lévy measure on Rm satisfying ν({0}) = 0, ν({z; |z| > 1}) < ∞
and

∫
|z|≤1

|z|2ν(dz) < ∞.

Let v be a Lipschitz continuous vector field from R to itself. Consider
a canonical SDE driven by a vector field-valued semimartingale Ztv:

dSt = v(St) � dZt. (2.3)

Then we can define a flow St; 0 ≤ t ≤ T as the solution of SDE (2.3):

St = S0 +
∫ t

0

v(ξr) � dZr. (2.4)

If we represent this by using Itô integral, then we get

St = S0 +
∫ t

0

bv(Sr)dr +
∫ t

0

v(Sr−)dZd(r)

+
∑

0<r≤t

[exp(∆Zrv)(S0,r−)− S0,r− −∆Zrv(S0,r−)]

= S0 +
∫ t

0

bv(S0,r)dr (2.5)

+
∫ t

0

∫
U

[exp(zv)(S0,r)− S0,r − zv(S0,r)]ν(dz)dr

+
∫ t

0

∫
U

[exp(zv)(S0,r−)− S0,r−]Ñp(dz, dr)

+
∫ t

0

∫
Uc

[exp(zv)(S0,r−)− S0,r−]Np(dz, dr)

because of∫ t

0

v(S0,r−)dZd(r) =
∫ t

0

∫
U

zv(S0,r−)Ñp(dz, dr)

+
∫ t

0

∫
Uc

zv(S0,r−)Np(dz, dr)
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and ∑
0<r≤t

[exp(∆Zrv)(S0,r−)− S0,r− −∆Zrv(S0,r−)]

=
∫ t

0

∫
R

[exp(∆Zrv)(S0,r−)− S0,r− −∆Zrv(S0,r−)]Np(dz, dr),

where R = U ∪ U c and v is a smooth vector field on R.

As our preliminary, let us think range set of option prices in canoni-
cal SDE model. If we put v(x) = x, this model is reduced to the model
of [1]. Thus we get:

St = S0 +
∫ T

0

bSsds +
∫ T

0

∫
U

[ezSs − Ss − zSs]ν(dz)ds (2.6)

+
∫ T

0

∫
U

[ezSs− − Ss−]Ñp(dz, ds)

+
∫ T

0

∫
Uc

[ezSs− − Ss−]Np(dz, ds).

In the following, the time-horizon T will be considered finite. For a
continuous function g : (0,∞) → [0,∞) and an exercise price K ∈ R,
we think an FT -measurable random variable h : Ω → [0,∞) defined by
h = g(ST ). We fix the rate function of interest as k(t) := rt. Under a
measure Q which is equivalent to given probability P and makes e−rtSt

martingales, we define the value uQ(S0) of option h = g(ST ) at time
t = 0 with maturity T by

uQ(S0) := EQ[e−rT g(ST )|ξ0], (2.7)

where EQ is an expectation with respect to Q. Then, for all measures
which are equivalent to given probability P and make e−rtSt martin-
gales, we get the range interval of option price u(ξ0):

[e−rT g(erT S0), S0).

Further the range set of prices is dense subset of above interval by the
same terminology of [1].
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3. Pricing options
Let us think the canonical SDE of the form:

dSt = v(St) � dZt. (3.1)

Then we get the solution:

St = S0 +
∫ t

0

bv(Ss)ds (3.2)

+
∫ t

0

∫
U

[exp(zv)(Ss)− Ss − zv(Ss)]ν(dz)ds

+
∫ t

0

∫
U

[exp(zv)(Ss−)− Ss−]Ñp(dz, ds)

+
∫ t

0

∫
Uc

[exp(zv)(Ss−)− Ss−]Np(dz, ds).

Then, for the payoff function g : (0,∞) → [0,∞) such that g(x) =
(x−K)+ where K ∈ R is an exercise price, the price of European call
option is defined as;

uQ(0, S0) = EQ[e−rT g(ST )|S0] (3.3)

It is almost impossible to calculate the number of price uQ(0, S0) ex-
actly, because we can’t find appropriate new probability measure. Thus
we think under the probability Q which makes e−rtSt martingale.

Theorem 3.1. For an European call option h = g(ST ), the value
uQ(0, S0) at time t = 0 of h with maturity T is given by

uQ(0, S0) = e−rT A(x)−1

∫ ∞

0

g(x)A(x)dx,

where A(x) =
∫∞
0

δ0(y)p(x, y)dy, p(x, y) is a density of joint law of

(ST , S0) such that log p(·, ·) is C1 with a differential which grows at
most in a polynomial way at infinity, δ0(y) = −H(y) ∂

∂y log p(x, y) and

H = I(x>0) + c, c ∈ R is arbitrary constant.
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Proof. . By the representation formula in the application of Malli-
avin calculus to Monte Carlo method(c.f. [3]), we get that:

EQ[g(ST )|S0] = EQ[g(ST )δ0(S0)]EQ[δ0(S0)]−1,

and
EQ[g(ST )δ0(S0)] =

∫ ∫
g(x)δ0(y)p(x, y)dxdy.

Thus, we get (c.f. Remark 5 of [1]):

uQ(0, S0) = e−rT EQ[g(ST )|S0]

=
e−rT

EQ[δ0(S0)]

∫ ∞

0

∫ ∞

0

g(x)δ0(y)p(x, y)dxdy.

�

Remark. If the payoff function g is C1-function, we can get another
representation formulas (c.f. [3]): EQ[g(ST )δ0(S0)] is given by∫ ∫

{g(x)H(y)q(x, y)− g′(x)H(y)r(x, y)}p(x, y)dxdy,

provide q and r satisfy

q +
1
p

∂

∂x
(rp) = − ∂

∂y
(log p).

Let us think a solution of canonical SDE (2.3):

St = S0 +
∫ t

0

bv(Ss)ds +
∫ t

0

∫
U

[exp(zv)(Ss)− Ss − zv(Ss)]ν(dz)ds

+
∫ t

0

∫
U

[exp(zv)(Ss−)− S−s]Ñp(dz, ds)

+
∫ t

0

∫
Uc

[exp(zv)(S−s)− S−s]Np(dz, ds). (3.4)

To get more small range interval for option price ui
Q(0, Si

0), we assume
that g(ST ) = ST −K ≥ 0. Then we get a result by putting:

B(Ss) = bv(Ss) +
∫

U

[exp(zv)(Ss)− Ss − zv(Ss)]ν(dz).
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Theorem 3.2. If we assume B(St) ≤ rSt−, then we get

uQ(0, S0) ≤ S0 − e−rT K + EQ[GT |F0], (3.5)

where

GT =
∫ T

0

∫
U

[exp(zv)(Ss−)− Ss−]Ñp(dz, ds)

+
∫ T

0

∫
Uc

[exp(zv)(Ss−)− Ss−]Np(dz, ds).

Proof. By the integration by parts, we get

e−rtSt = S0 +
∫ t

0

Ss−de−rt +
∫ t

0

e−rtdSs

= S0 +
∫ t

0

Ss−(−re−rs)ds +
∫ t

0

e−esdSs.

Therefore we get

e−rtSt = S0 −
∫ t

0

rSs−e−rsds +
∫ t

0

e−rsB(Ss)ds

+
∫ t

0

e−rs

∫
U

[exp(zv)(Ss−)− Ss−]Ñp(dz, ds)

+
∫ t

0

e−rs

∫
Uc

[exp(zv)(Ss−)− Ss−]Np(dz, ds).

Thus, from the assumption, we get

St ≤ ert(S0 + Gt).

Therefore, we get

ST −K ≤ erT (S0 + GT )−K a.s.,

e−rT (ST −K) ≤ S0 + GT − e−rT K a.s..
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Thus, we get

EQ[e−rT (ST −K)|F0] ≤ S0 + EQ[GT |F0]− e−rT K

= S0 − e−rT K + EQ[GT |F0].

Thus we get the result. �

From this result, we see that if EQ[GT |F0] < e−rT K, then for any
martingale measures we get more small interval than those of above
section 2.

4. Hedging options
We assume that discounted assets price process is martingale under

a fixed measure Q equivalent to the given probability P in this section.
Thus, we will omit the notation Q in the following. Consider the SDE
(2.2) and the solution of it. We fix a finite horizon T and k(t) := rt.
A trading strategy will be defined by an adapted process πt; 0 ≤ t ≤ T
taking values in R and representing total amounts of assets held over
time. We will constrain the processes π0

t ; 0 ≤ t ≤ T and πt; 0 ≤ t ≤ T
are left-continuous to take the jumps into account. The value process
Vt(π̂); 0 ≤ t ≤ T with initial capital x ∈ R+, corresponding to portfolio
π̂t := (π0

t , πt), is given by with initial condition V0 = x;

Vt(π̂) := π0
t ert + πt · St, (4.1)

where · is a product. The strategy π̂t is said to be self-financing if

dVt(π̂) = π0
t dert + πt · dSt. (4.2)

Equivalently, we get the condition of self-financing of strategy π̂t:

Vt(π̂) = x +
∫ t

0

π0
sders +

∫ t

0

πs · dSs. (4.3)

In the following, we denote value process only Vt. To make sense for
this equation, we impose the condition:∫ T

0

|π0
s |ds +

∫ T

0

|πs|2ds < ∞ a.s.
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For the future, we will impose a stronger condition of integrability
on the processes πt; 0 ≤ t ≤ T as following: an admissible strategy
is defined by an adapted, left-continuous process π̂t; 0 ≤ t ≤ T with
values in R2 satisfying (4.3) a.s. for all t ∈ [0, T ],∫ T

0

|π0
s |ds < ∞, P − a.s.

and

E[
∫ T

0

(πs)2(Ss)2ds] < ∞. (4.4)

Proposition 4.1. Let πt; 0 ≤ t ≤ T be an adapted, left continuous
process such that the components πt; 0 ≤ t ≤ T hold (4.4). Let V0 ∈
R+. Then there exists a unique process π0

t ; 0 ≤ t ≤ T such that
π̂t; 0 ≤ t ≤ T defines an admissible strategy with initial values V0.
Further, the discounted value process Ṽt; 0 ≤ t ≤ T of strategy πt is
given by

Ṽt = V0 +
∫ t

0

πs · dS̃s, (4.5)

where S̃s = e−rsSs is a discounted asset price.

Proof. If π̂t; 0 ≤ t ≤ T defines an admissible strategy, from (4.3),
its value Vt at time t is given by Vt = Ut + Jt, where

Ut = V0 +
∫ t

0

π0
sders +

∫ t

0

πs · dSc(s),

Jt =
∫ t

0

πs · dSd(s).

Differentiating the products e−rtUt, e−rtJt and e−rtVt, we get

e−rtVt − V0 =
∫ t

0

−re−rsUsds +
∫ t

0

e−rsdUs

+
∫ t

0

−re−rsJsds +
∫ t

0

e−rsdJs.
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Therefore we have that

Ṽt = V0 +
∫ t

0

−re−rs(Us + Js)ds +
∫ t

0

e−rsd(Us + Js)

= V0 +
∫ t

0

−re−rsVsds +
∫ t

0

e−rsπ0
sders +

∫ t

0

e−rsπs · dSs

= V0 −
∫ t

0

re−rsVsds +
∫ t

0

rπ0
sds +

∫ t

0

e−rsπs · dSs.

Then, by the definition (4.1), we get

Ṽt = V0 −
∫ t

0

re−rs[π0
sers + πs · Ss]ds

+
∫ t

0

rπ0
sds +

∫ t

0

e−rsπs · dSs

= V0 +
∫ t

0

πse
−rs · dSs −

∫ t

0

rπs · S̃sds.

But, from the fact that

dS̃s = e−rsdSs − re−rsSsds,

we get (4.5).
If V0 and πt are given, the unique process π0

t such that π̂t; 0 ≤ t ≤ T
is an admissible strategy with initial value V0, is given by

π0
t = Ṽt − πt · S̃t

= V0 +
∫ t

0

πs · dS̃s − πt · S̃t

by (4.1) and (4.5). From this formula, we see that the process π0
t is

adapted, has left-hand limit at any point, and is such that π0
t = π0

t−.�

From the condition (4.4), we get that

E[
∫ T

0

(πs)2(S̃s)2ds] < ∞.
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From this condition, we see the discounted value process Ṽt; 0 ≤ t ≤ T
of an admissible strategy πt; 0 ≤ t ≤ T is again a square-integrable
martingale.

Now, let us stand from the writer’s point of view. We will deal
for simple martingale model without Girsanov transformation, because
it influence to the bounded variation part of semimartinglae only in
our models. The writer sells the option at a price V0 at time 0 and
then follows an admissible strategy between times 0 and T . From
Proposition 4.1, this strategy is completely determined by the process
πt; 0 ≤ t ≤ T representing the amounts of the risky assets. If Vt

represents the value of this strategy πt at time t, the hedging mismatch
at maturity is given by h − VT . A way of measuring the risk is to
introduce the quantity RT (0) from RT (t):

RT (t) := E[(e−r(T−t)(h− VT ))2|Ft]. (4.6)

We know that the minimal risk RT (0) at maturity T is following:

RT (0) = E[(e−rT (g(ST )− VT ))2|F0] (4.7)

= E[(e−rT (h− VT ))2|F0]

= E[(h̃− ṼT )2|F0],

and the initial value of any admissible strategy aiming at minimizing
the risk RT (0) at maturity T is given by

u(0, S0) := E[e−rT g(ST )|F0] (4.8)

= E[h̃|F0],

where h̃ := e−rT g(ST ) and g is some continuous payoff function of
asset defined from (0,∞)(⊂ R) to [0,∞).

Now, we determine a process πt; 0 ≤ t ≤ T which is a trading
strategy for St of quantities of risky asset to be held in portfolio to
minimize RT (0). To do so, we need the following proposition:
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Proposition 4.2. Let Vt be the value of asset at time t of an ad-
missible strategy with initial value V0 = E[e−rT g(ST )|F0], determined
by a process πt; 0 ≤ t ≤ T for the quantities of risky asset. Then the
quadratic risk at maturity RT (0) is given by

RT (0) = E[(
∫ T

0

∫
U

Φ(S̃s, z)Ñp(dz, ds))2|F0], (4.9)

where

Φ(S̃s, z) = ũ(s, exp(zv)(S̃s−))− ũ(s, S̃s)

− πs · (exp(zv)(S̃s−)− S̃s−).

Proof. From the Proposition 4.1, we have that, for t ≤ T ,

Ṽt = V0 +
∫ t

0

πs · dS̃s (4.10)

= u(0, ξ0)−
∫ t

0

rπs · S̃sds +
∫ t

0

e−rsπs · dSs

= u(0, ξ0)−
∫ t

0

rπs · S̃sds +
∫ t

0

e−rsπs

· [
∫

U

(ezSs − Ss − zSs)ν(dz)ds +
∫

U

(ezSs− − Ss−)Ñp(dz, ds)

+
∫

Uc

(ezSs− − Ss−)Np(dz, ds)],

where dSt is of the SDE form (3.2). We define function ũ(t, x) :=
e−rtu(t, xert) where u(t, St) := E[e−r(T−t)g(ST )|Ft]. Then we get
ũ(t, S̃t) = E[h̃|Ft]. It induce that ũ(t, S̃t) is the discounted price of
option h at time t and that ũ(t, S̃t) is a martingale. From the defini-
tion of u(t, x), we can deduce that ũ(t, x) is C1,2-function on [0, T ]×R+.
Thus from the Itô formula, we obtain for the St represented by (3.2)
when s = 0 in solution (2.3);

ũ(t, S̃t) = ũ(0, S̃0) +
∫ t

0

∂

∂s
ũ(s, S̃s)ds (4.11)

+
∫ t

0

∂

∂x
ũ(s, S̃s)

∫
U

(ezS̃s − S̃s − zS̃s)ν(dz)ds
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+
∫ t

0

∫
U

[ũ(s, S̃s− + ∆S̃s)− ũ(s, S̃s)

− ∂

∂x
ũ(s, S̃s)(ezS̃s − S̃i

s)]N̂p(dz, ds)

+
∫ t

0

∫
U

[ũ(s, S̃s− + ∆S̃s)− ũ(s, S̃s)]Ñp(dz, ds)

+
∫ t

0

∫
Uc

[ũ(s, S̃s− + ∆S̃s)− ũ(s, S̃s)]Np(dz, ds).

From the facts: S̃t = e−rtSt, St = ertS̃t, and ∆St = ert∆S̃t, we get

∆S̃t = e−rt∆St = e−rtert∆S̃t = S̃t−(e∆Zt − 1),

and
S̃t− + ∆S̃t = S̃t− + S̃t−(e∆Zt − 1) = S̃t−e∆Zt .

Thus we get that

ũ(t, S̃t) = ũ(0, S̃0) +
∫ t

0

∂sũ(s, S̃s)ds (4.12)

+
∫ t

0

∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)− ∂xũ(s, S̃s)zS̃i
s]ν(dz)ds

+
∫ t

0

∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)]Ñp(dz, ds)

+
∫ t

0

∫
Uc

[ũ(s, ezS̃s−)− ũ(s, S̃s)]Np(dz, ds).

Gathering equalities (4.10) and (4.12), from the fact:

h̃ := e−rT g(ST ) = e−rT E[g(ST )|FT ]

= e−rT u(T, ξT ) = ũ(T, S̃T ),

we get that

h̃− ṼT = ũ(T, S̃T )− ṼT (4.13)

= M (1)(T ) + M (2)(T ).
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Here

M (1)(T ) =
∫ T

0

∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)]Ñp(ds, dz)

−
∫ T

0

πs ·
∫

U

(ezS̃s− − S̃s−)Ñp(ds, dz)

=
∫ T

0

∫
U

Φ(S̃s, z)Ñp(ds, dz)

is the martingale part, and the bounded variation part M (2)(T ) of
semimartingale is

M (2)(T ) =
∫ T

0

∂sũ(s, S̃s)ds

+
∫ T

0

∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)−
d∑

i=1

∂xũ(s, S̃s)zS̃i(s)]ν(dz)ds

+
∫ T

0

∫
Uc

[ũ(s, ezS̃s−)− ũ(s, S̃s)]Np(ds, dz)

+
∫ T

0

rπ∗s · S̃sds

−
∫ T

0

π∗s ·
∫

U

(ezS̃s − S̃s − zS̃s)ν(dz)ds

−
∫ T

0

π∗s ·
∫

Uc

(ezS̃s− − S̃s−)Np(ds, dz).

But from the fact that h̃ − S̃T is again a martingale, we get that the
bounded variation part M (2)(T ) of semimartingale must be 0. Thus
we get by (4.7) and (4.13):

RT (0) = E[(M (1)(T ))2|F0].

Therefore, the risk at maturity RT (0) is got as (3.9). �

From this proposition, we get following result:
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Theorem 4.3. The strategy πt corresponding to the minimal risk
RT (0) is given by

πt = D(t, S̃t), (4.14)

where

D(t, x) = {
∫

U

(ezx− x)2ν(dz)}
−1

· {
∫

U

(ezx− x)[ũ(s, ezx)− ũ(t, x)]ν(dz)}.

Proof. From Proposition 4.2, we get that

RT (0) = E[(
∫ T

0

∫
U

Φ(S̃s, z)Ñp(dz, ds))2|F(0)] (4.15)

= E[(
∫ T

0

∫
U

Φ(S̃s, z)Np(dz, ds)−
∫ T

0

∫
U

Φ(S̃s, z)ν(dz)ds)2|F0]

= E[(
∫ T

0

∫
U

Φ(S̃s, z)Ñp(dz, ds))2 − (
∫ T

0

∫
U

Φ(S̃s, z)ν(dz)ds))2

+ (
∫ T

0

∫
U

Φ(S̃s, z)ν(dz)ds)2|F0]

= E[(
∫ T

0

∫
U

Φ(S̃s, z)ν(dz)ds)2]

= E[
∫ T

0

∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)− π∗s · (ezS̃s− − S̃s−)]2ν(dz)ds].

It follows that the minimal risk is obtained when π satisfies∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)

− π∗s · (ezS̃s− − S̃s−)](ezS̃s− − S̃s−)ν(dz) = 0, P − a.e..

Thus we get∫
U

[ũ(s, ezS̃s−)− ũ(s, S̃s)](ezS̃s− − S̃s−)ν(dz)

= π∗s ·
∫

U

(ezS̃s− − S̃s−)2ν(dz).
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From this, we get the result. �
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