A PINCHING THEOREM FOR RIEMANNIAN 4-MANIFOLD

Kwanseok Ko

Abstract

Let (M, g) be a compact oriented 4-dimensional Riemannian manifold whose sectional curvature k satisfies $1 \geq k \geq$ 0.1714 . We show that M is topologically S^{4} or $\pm \mathbb{C P}^{2}$.

1. Introduction

The purpose of this paper is to prove the following .
Theorem A. Let M be a smooth compact oriented Riemannian 4manifold whose sectional curvature k satisfies $1 \geq k \geq 0.1714$. Then M is topologically a 4 -sphere S^{4} or a complex projective 2-plane $\pm \mathbb{C P}^{2}$.

Seaman[4] proved that if the manifold M satisfies the pinching condition

$$
1 \geq k \geq \frac{1}{3 \sqrt{1+\frac{3 \cdot 2^{1 / 4}}{5^{1 / 2}}}+1} \approx 0.1714
$$

then M is definite.
Under this condition, we obtained the inequality

$$
\begin{equation*}
|\tau(M)|<\frac{1}{2} \chi(M), \tag{1}
\end{equation*}
$$

where $\chi(M)$ the Euler characteristic of M and $\tau(M)$ is the signature of M. The idea of proof of the inequality (1) was originally due to Ville[8]. It follows easily that the second Betti number satisfies $b_{2}(M) \leq 1$. Since M is compact, even dimensional, oriented, and positively curved,

Received November 14, 2004.
2000 Mathematics Subject Classification: 53C21.
Key words and phrases: Riemannian, 4-Manifold, Sectional Curvature, curvature Tensor.
it is simply connected by Synge theorem[6]. Freedman's classification theorem[2] states that smooth compact simply connected 4 -manifolds are classified topologically by their intersection form. Therefore M is topologically a 4 -sphere S^{4} or a complex projective 2 -plane $\pm \mathbb{C P}^{2}$. This result was announced in Ko[3]. By adapting Ville's argument, we get the inequality(1). The we have the conclusion of the theorem.

2. Estimates of curvature tensor

In this section, we introduce Ville's method and include her's lemmas and proofs for the completeness of the theorem.

Let M be an oriented 4- manifolds and let $T_{p}(M)$ be the tangent space of M at a fixed point $p \in M$. The rank- 6 bundle of 2 -forms Λ^{2} on an oriented Riemannian 4-manifold (M^{4}, g) has an invariant decomposition

$$
\begin{equation*}
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-} \tag{2}
\end{equation*}
$$

as the sum of two rank- 3 vector bundles. Here $\Lambda^{ \pm}$are by definition the eigenspaces of the Hodge $*$ operator

$$
\star: \Lambda^{2} \rightarrow \Lambda^{2},
$$

corresponding respectively to the eigenvalue ± 1. Sections of Λ^{+}are called self-dual 2 -forms, whereas sections of Λ^{-}are called anti-self-dual 2 -forms.

Let \tilde{G} be the subspace of Λ^{2} consisting of unitary simple bivectors (that is of $x \wedge y$ where x and y are unitary and orthogonal). Let $G=$ $\tilde{G} / \pm 1$ be the 2-dimensional Grassmannia manifold of $T_{p}(M)$.

Lemma 1. Let $H \in \Lambda^{+}$and $K \in \Lambda^{-}$.
Then

$$
\frac{H+K}{\sqrt{2}} \in \tilde{G} \Longleftrightarrow\|H\|=\|K\|=1
$$

We can also make use of this splitting of Λ^{2} to write the matrix of curvature tensor R [5]:

$$
R=\left(\begin{array}{c|c}
W^{+}+u I d_{\Lambda^{+}} & Z_{1} \tag{3}\\
\hline Z_{1} & W^{-}+u I d_{\Lambda^{-}}
\end{array}\right)
$$

where $U=u I d_{\Lambda^{2}}$ and W^{+}and W^{-}are the matrix of self-dual and anti-self-dual Weyl curvatures respectively. The matrix of Weyl curvature $W=W^{+}+W^{-}$is trace-free .

$$
Z=\left(\begin{array}{c|c}
0 & Z_{1} \\
\hline Z_{1} & 0
\end{array}\right)
$$

represents the matrix of trace-free Ricci curvature tensor.
The curvatures $W^{ \pm}, Z$, and U correspond to different irreducible representation of $S O(4)$, so the only invariant quadratic polynomials in the curvature of an oriented 4-manifold are linear combinations of $\|U\|\left\|^{2},\right\| Z\left\|^{2},\right\| W^{+} \|^{2}$ and $\left\|W^{-}\right\|^{2}$. This observation can be applied, in particular, to simplify the integrands [1] of the 4-dimensional Chern-Gauss-Bonnet

$$
\begin{equation*}
\chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left[\|U\|^{2}+\left\|W^{+}\right\|^{2}+\left\|W^{-}\right\|^{2}-\|Z\|^{2}\right] d \mu \tag{4}
\end{equation*}
$$

and Hirzebruch signature

$$
\begin{equation*}
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left[\left\|W^{+}\right\|^{2}-\left\|W^{-}\right\|^{2}\right] d \mu \tag{5}
\end{equation*}
$$

formulæ. Here the curvatures, norms $\|\cdot\|$, and volume form $d \mu$ are, of course, those of any given Riemannian metric g on M.

Let us assume that $\int_{M}\left[\left\|W^{+}\right\|^{2}-\left\|W^{-}\right\|^{2}\right] d \mu \geq 0$ (possibly by changing the orientation of M : our purpose will then be to give a lower estimate for:

$$
\begin{equation*}
\Delta(R)=\|U\|^{2}-\frac{1}{3}\left\|W^{+}\right\|^{2}+\frac{7}{3}\left\|W^{-}\right\|^{2}-\|Z\|^{2} . \tag{6}
\end{equation*}
$$

The pinching hypothesis yields the following.
In the followings. we let $\delta=0.1714$.
Lemma 2.

$$
\begin{gathered}
\text { (a) } \forall P \in \tilde{G}, \delta \leq<(U+W) P, P>\leq 1 \\
\text { (b) } \forall H \in \Lambda^{+}, \delta \leq u+\frac{1}{2}<W^{+} H, H>\leq 1
\end{gathered}
$$

Proof. (a) $\left.<(U+W) P, P\rangle=\frac{1}{2}[<R P, P\rangle+\langle R * P, P\rangle\right]$.
(b) The matrix of the quadratic from definition Λ^{-}by

$$
K \mapsto<W^{-} K, K>
$$

is of trace zero, hence it admits a unitary isotropic vector K_{0}. Let us consider

$$
P=\frac{H+K_{0}}{\sqrt{2}} \in \tilde{G} .
$$

We get :

$$
<(U+W) P, P>=u+\frac{1}{2}<W^{+} H, H>
$$

Now we estimate the various curvature components of the equation separately.
W^{+}is a symmetric mapping of Λ^{+}, hence Λ^{+}possesses an orthonormal basis of eigenvectors $\left\{H_{1}, H_{2}, H_{3}\right\}$.
(a) Let $W^{+} H_{i}=w_{i}^{+} H_{i}: w_{i}^{+}$'s are the eigenvalues of W^{+}.
(b) Let $z_{i} \in \underline{\mathrm{R}}, K_{i} \in \Lambda^{-}, i=1,2,3$, be such that

$$
\begin{array}{r}
\left\|K_{i}\right\|=1, \\
Z H_{i}=z_{i} K_{i} .
\end{array}
$$

We get

$$
z_{i}^{2}=<Z H_{i}, K_{i}>^{2}=\left\|Z H_{i}\right\|^{2} .
$$

(c) Let $w_{i}^{-}=<W^{-} K_{i}, K_{i}>$.

Then the w_{i}^{-}'s are not eigenvalues of W^{-}.
(d) Let

$$
\begin{aligned}
v_{i} & =u+\frac{w_{i}^{+}}{2} \\
& =<\left(U+W^{+}\right),\left(\frac{H_{i}+K_{0}}{\sqrt{2}}\right),\left(\frac{H_{i}+K_{0}}{\sqrt{2}}\right)>
\end{aligned}
$$

Lemma 3.

$$
\|Z\|^{2} \leq 2 \sum_{i=1}^{3} A_{i}^{2}
$$

where,

$$
A_{i}=\min \left[1-v_{i}+\frac{w_{i}^{-}}{2}, v_{i}+\frac{w_{i}^{-}}{2}-\delta\right]
$$

Proof. According to lemma2, the $P_{i}^{ \pm}=\frac{H_{i}+K_{i}}{\sqrt{2}}$ belong to \tilde{G}, the pinching hypothesis yields

$$
\delta \leq v_{i}+\frac{w^{-}}{2} \pm<Z H_{i} K_{i}>\leq 1
$$

and hence

$$
\|Z\|^{2}=2 \sum_{i=1}^{3}\left\|Z H_{i}\right\|^{2} \leq \sum_{i=1}^{3} A_{i}^{2}
$$

We now compute

$$
\begin{array}{r}
\|U\|^{2}-\frac{1}{3}\left\|W^{+}\right\|^{2}=6 u^{2}-\frac{1}{3} \sum_{i=1}^{3}\left(w_{i}^{+}\right)^{2} \\
=-\frac{4}{3} \sum_{i=1}^{3} v_{i}^{2}+\frac{10}{9}\left(\sum_{i=1}^{3} v_{i}\right)^{2} .
\end{array}
$$

If we put $\alpha=\sup _{1,2,3}\left|w_{i}^{-}\right|$, then using the fact $\operatorname{tr}\left(W^{-}\right)=0$ we have a lower bound for $\left\|W^{-}\right\|^{2}$:

$$
\left\|W^{-}\right\|^{2} \geq \frac{3}{2} \alpha^{2}
$$

We can now derive from the preceding estimates

$$
\begin{equation*}
\frac{\Delta}{2} \geq \frac{5}{9}\left(\sum_{i=1}^{3} v_{i}\right)^{2}-\frac{2}{3} \sum_{i=1}^{3} v_{i}^{2}+\frac{7}{4} \alpha^{2}-\sum_{i=1}^{3} \min \left[\left(1-v_{i}+\frac{w_{i}^{-}}{2}\right)^{2},\left(v_{i}+\frac{w_{i}^{-}}{2}-\delta\right)^{2}\right] . \tag{7}
\end{equation*}
$$

3. The proof of Main Theorem

Let us define 2 real valued functions, m and H of respectively 1 and 3 real variables:

$$
m(x)=\min (1-x, x-\delta),
$$

$$
\begin{equation*}
H\left(x_{1}, x_{2}, x_{3}\right)=\frac{9}{5}\left(\sum_{i=1}^{3} x_{i}\right)^{2}-\frac{2}{3} \sum_{i=1}^{3} x_{i}^{2}-\sum_{i=1}^{3} m\left(v_{i}\right)^{2}-\frac{1}{5}\left(\sum_{i=1}^{3} m\left(x_{i}\right)\right)^{2} . \tag{8}
\end{equation*}
$$

We transform (7) by making use of

$$
\frac{7}{4} \alpha^{2}-\sum_{i=1}^{3} \min \left[\left(1-x_{i}+\frac{w_{i}^{-}}{2}\right)^{2},\left(x_{i}+\frac{w_{i}^{-}}{2}-\delta\right)^{2}\right] \geq-\sum_{i=1}^{3} m\left(x_{i}\right)^{2}-\frac{1}{5}\left(\sum_{i=1}^{3} m\left(x_{i}\right)\right)^{2} .
$$

This last inequality, together with (7) yield

$$
\frac{\Delta}{2} \geq H\left(v_{1}, v_{2}, v_{3}\right)
$$

According to lemma2 we just need to show that H is positive on

$$
E=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \underline{\mathrm{R}}^{3} \mid \delta \leq x_{3} \leq x_{2} \leq x_{1} \leq 1\right\} .
$$

We split E into the union of 4 convex subdomains E_{i}, separated by the hyperplanes $x_{i}=\frac{1+\delta}{2}$: on each of the E_{i} 's, H turns out to be concave. We check its values on the extreme points of the E_{i} 's: they are all positive. The proof of inequality (1) is thus complete.

References

[1] A. Besse, Einstein Manifolds, Springer-Verlag, 1987.
[2] M. Freedman, On the Topology of 4-Manifolds, J. Diff. Geom. 17 (1982) 357454.
[3] Kwanseok Ko, On 4- dimensiona Einstein manifolds which are positively pinched, Kangweon-Kyungki Math. Joun, 3. No. 1 (1995) 81-88.
[4] W. Seaman, On four manifolds which are positively pinched, Ann. Goloba Anal . Geom.5. No. 3 (1987),193-198.
[5] I. M. Singer and J. A. Thorpe, The Curvature of 4-dimensional Einstein Spaces, Global Analysis (Papers in Honor of K. Kodaira), pp. 355-365, Univ. Tokyo Press, Tokyo, 1969.
[6] J.L. Synge, On the Connectivity of Spaces of Positive Curvature, Quart. J. Math. 7 (1936) 316-320.
[7] J.A. Thorpe, Some Remarks on the Gauss-Bonnet Formula, J. Math. Mech. 18 (1969) 779-786.
[8] M. Ville , Les variétés Riemmannienes de dimensiones $4 \frac{4}{19}$ pincées, Ann. Fourier(Grenoble). 39 (1989) 149-154.

Department of Mathematics
Inha University
Incheon, 402-751, Korea
E-mail: ksko@math.inha.ac.kr

