GENERATOR POLYNOMIALS OF THE p-ADIC QUADRATIC RESIDUE CODES

SUNG JIN KIM

ABSTRACT. Using the Newton’s identities, we give the inductive formula for the generator polynomials of the p-adic quadratic residue codes.

1. Introduction

Let p be a prime. We use the symbol \mathbb{Z}_{p^a} to denote the ring $\mathbb{Z}/p^a\mathbb{Z}$ of integers modulo p^a for any positive integer a, and \mathbb{Z}_{p^∞} for the ring of p-adic integers. An element $u \in \mathbb{Z}_{p^a}$ may be written uniquely as a finite sum

$$u = u_0 + pu_1 + p^2u_2 + \cdots + p^{a-1}u_{a-1},$$

and any element of \mathbb{Z}_{p^∞} as an infinite sum

$$u = u_0 + pu_1 + p^2u_2 + \cdots,$$

where $0 \leq u_i \leq p - 1$. The units in \mathbb{Z}_{p^a} or \mathbb{Z}_{p^∞} are precisely those u for which $u_0 \neq 0$. \mathbb{Z}_{p^a} has characteristic p^a, and \mathbb{Z}_{p^∞} has characteristic 0. The finite field of $q = p^a$ elements will be denoted by \mathbb{F}_q.

For a positive integer m, the Galois extension of \mathbb{Z}_q of degree m is denoted by $GR(q, m)$. It is called a Galois ring and it can be realized as

$$GR(q, m) = \mathbb{Z}_q[X]/\langle h(X) \rangle$$

for any monic polynomial of degree m in $\mathbb{Z}[X]$, which is irreducible over \mathbb{Z}_p. We may choose $h(X)$ so that its root ζ is a $(p^m - 1)$th root of unity, and $GR(q, m) = \mathbb{Z}_q[\zeta]$. See [2, 6] for details. Thus any element $s \in GR(q, m)$ can be written as

$$s = b_0 + b_1\zeta + b_2\zeta^2 + \cdots + b_{m-1}\zeta^{m-1}, \quad b_i \in \mathbb{Z}_q.$$
The map $\mathcal{F}_r : GR(q, m) \to GR(q, m)$ defined by

$$\mathcal{F}_r(b_0 + b_1 \zeta + \cdots + b_{m-1} \zeta^{m-1}) = b_0 + b_1 \zeta^p + \cdots + b_{m-1} \zeta^{p(m-1)}$$

is called the Frobenius map. It is the generator of the Galois group of $GR(q, m)$ over \mathbb{Z}_q. In particular, the elements of $GR(q, m)$ fixed under \mathcal{F}_r is \mathbb{Z}_q.

2. Quadratic residue codes over \mathbb{Z}_{p^a}

Let $n \neq 2, 3$ be a prime. Let $Q \subset \mathbb{Z}_n$ denote the set of nonzero quadratic residues modulo n and N denote the set of nonresidues modulo n.

Let $p < n$ be another prime which is a quadratic residue mod n. Let $q = p^a$, where a is a positive integer. Let m be the order of p modulo n. Then $n \mid p^m - 1$ and hence the Galois ring $GR(q, m)$ contains a primitive nth root of unity $\alpha = \zeta^{(p^m-1)/n}$.

Let

$$(1) \quad Q_q(X) = \prod_{i \in Q} (X - \alpha^i), \quad N_q(X) = \prod_{j \in N} (X - \alpha^j).$$

Then the degrees of $Q_q(x)$ and $N_q(x)$ are both $\frac{n-1}{2}$, and

$$X^n - 1 = \prod_{i=0}^{n-1} (X - \alpha^i) = (X - 1)Q_q(X)N_q(X).$$

Since $pQ = Q$, we have that

$$\mathcal{F}_r Q_q(X) = \prod_{i \in Q} (X - \alpha^{ip}) = \prod_{i \in pQ} (X - \alpha^i) = Q_q(X),$$

and similarly $pN = N$ implies that $\mathcal{F}_r N_q(X) = N_q(X)$. Thus $Q_q(X)$ and $N_q(X)$ have coefficients from \mathbb{Z}_q. Furthermore,

$$Q_{p^a}(X) \equiv Q_{p^a}(X) \pmod{p^a}$$

for all $a \leq b < \infty$. We define Q_{p^∞} to be the p-adic limits of Q_{p^a}. In particular,

$$(2) \quad Q_{p^a}(X) \equiv Q_{p^\infty}(X) \pmod{p^a}.$$

The similar results hold for $N_q(X)$.
Definition 2.1. The cyclic codes of \(\mathbb{Z}_q[X]/(X^n - 1) \) with generator polynomials \(Q_q(X) \), \((X - 1)Q_q(X)\), \(N_q(X) \) and \((X - 1)N_q(X)\), respectively, are called the quadratic residue codes over \(\mathbb{Z}_q \) and denoted by \(Q_q \), \(Q_q \), \(N_q \) and \(N_q \), respectively. When \(q = p^{\infty} \), then they are called the \(p \)-adic quadratic residue codes.

The reciprocal polynomial of a polynomial \(h(X) = a_0 + a_1X + \cdots + a_kX^k \) of degree \(k \) is the polynomial
\[
\tilde{h}(X) = a_k + a_{k-1}X + \cdots + a_0X^k = h(X^{-1})X^k.
\]
If \(\tilde{h}(X) = h(X) \), it is called a self reciprocal polynomial.

Theorem 2.2. Let \(Q_q(X) \) and \(N_q(X) \) be as in (1).

(i) If \(n = 4k - 1 \), then \(N_q(X) \) is the reciprocal polynomial to \(-Q_q(X) \).

(ii) If \(n = 4k + 1 \), then \(Q_q(X) \) and \(N_q(X) \) are self reciprocal polynomial.

Proof. Let \(\mathbb{Z}_n^* = \{1, 2, 3, \cdots, n - 1\} \). First note that
\[
\sum_{i \in \mathbb{Z}_n^*} i = 1 + 2 + \cdots + (n - 1) = n \cdot \frac{(n - 1)}{2} \equiv 0 \pmod{n}.
\]
On the other hand, for any \(b \in N \) we have that \(bQ = N \) and hence
\[
\sum_{i \in \mathbb{Z}_n^*} i = \sum_{i \in Q} i + \sum_{j \in N} j = \sum_{i \in Q} i + \sum_{i \in Q} bi = (1 + k) \sum_{i \in Q} i.
\]
Taking \(k \neq -1 \), we obtain that
\[
\sum_{i \in Q} i = 0.
\]
Furthermore, recall that \(\left(\frac{-1}{n} \right) = (-1)^{\frac{n-1}{2}} \). Hence \(-1 \) is a quadratic residue modulo \(n \) iff \(n \equiv 1 \pmod{4} \).

(i) We have \(|Q| = |N| = 2k - 1 \). Also \(-1 \) is a nonresidue and hence \(N = -Q \). We will show that \(N_q(X) = -Q_q(X^{-1}) \cdot X^{2k-1} \). Indeed,
\[
-Q_q(X^{-1}) \cdot X^{2k-1} = - \left(\prod_{i \in Q} (X^{-1} - \alpha^i) \right) \cdot X^{2k-1} = - \prod_{i \in Q} (X^{-1} - \alpha^i)X
\]
\[
= \prod_{i \in Q} (\alpha^i X - 1) = \prod_{i \in Q} \alpha^i \cdot \prod_{i \in Q} (X - \alpha^{-i})
\]
\[
= \alpha^0 \cdot \prod_{i \in Q} (X - \alpha^{-i}) = \prod_{j \in N} (X - \alpha^j) = N_q(X).
\]
Hence, $N_q(X)$ is the reciprocal polynomial to $-Q_q(X)$.

(ii) In this case we have that $|Q| = |N| = 2k$ and $Q = -Q$, $N = -N$. We have that

$$Q_q(X^{-1}) \cdot X^{2k} = \left(\prod_{i \in Q} (X^{-1} - \alpha^i) \right) \cdot X^{2k} = \prod_{i \in Q} (X^{-1} - \alpha^i)X$$

$$= \prod_{i \in Q} (1 - \alpha^i X) = \prod_{i \in Q} (\alpha^i X - 1) = \prod_{i \in Q} \alpha^i (X - \alpha^{-i})$$

$$= \prod_{i \in Q} \alpha^i \cdot \prod_{i \in \mathbb{Q}} (X - \alpha^{-i}) = \alpha^0 \cdot \prod_{i \in Q} (X - \alpha^{-i}) = \prod_{i \in Q} (X - \alpha^i)$$

$$= Q_q(X).$$

Similarly, we can show that $N_q(X) = N_q(X^{-1}) \cdot X^{2k}$. Hence $Q_q(X)$ and $N_q(X)$ are self reciprocal polynomials.

\[\square \]

3. Generator polynomials of quadratic residue codes

As in the previous section, let $n \neq 2, 3$ be a prime, $Q \subset \mathbb{Z}_n$ denote the set of nonzero quadratic residues modulo n and N the set of nonresidues modulo n. Let

$$f_Q(X) = \sum_{i \in Q} X^i, \quad f_N(X) = \sum_{i \in N} X^i.$$

Theorem 3.1. Let $R = \mathbb{Z}_q[X]/(X^n - 1)$.

(i) Suppose $n = 4k - 1$. In R, we have

$$f_Q^2 = \frac{(n-3)}{4} f_Q + \frac{(n+1)}{4} f_N,$$

$$f_N^2 = \frac{(n+1)}{4} f_Q + \frac{(n-3)}{4} f_N,$$

$$f_Q \cdot f_N = \frac{(n-1)}{2} + \frac{(n-3)}{4} f_Q + \frac{(n-3)}{4} f_N.$$
(ii) Suppose \(n = 4k + 1 \). In \(R \), we have

\[
f_Q^2 = \frac{(n-5)}{4} f_Q + \frac{(n-1)}{4} f_N + \frac{(n-1)}{2},
\]

\[
f_N^2 = \frac{(n-1)}{4} f_Q + \frac{(n-5)}{4} f_N + \frac{(n-1)}{2},
\]

\[
f_Q \cdot f_N = \frac{(n-1)}{4} f_Q + \frac{(n-1)}{4} f_N.
\]

Proof. These follows from Perron’s Theorem (p.519 in [7]). \(\square\)

The elementary symmetric polynomials \(s_0, s_1, s_2, \cdots, s_t \) in \(S[X_1, X_2, \cdots, X_t] \) over a ring \(S \) are

\[
s_i(X_1, X_2, \cdots, X_t) = \sum_{i_1 < i_2 < \cdots < i_t} X_{i_1} X_{i_2} \cdots X_{i_t}, \quad \text{for } i = 1, 2, \cdots, t.
\]

We define \(s_0(X_1, X_2, \cdots, X_t) = 1 \). It is clear that

\[(4)\]

\[(X-a_1) \cdots (X-a_t) = X^t - s_1(a)X^{t-1} + \cdots \pm s_t(a) = \sum_{i=0}^{t} (-1)^i s_i(a) X^{t-i},\]

where \(s_i(a) = s_i(a_1, a_2, \cdots, a_t) \).

For all \(i \geq 1 \), the \(i \)-power symmetric polynomials are defined by

\[p_i(X_1, X_2, \cdots, X_t) = X_1^i + X_2^i + \cdots + X_t^i.\]

The following Newton’s identities are well-known [4].

Theorem 3.2 (Newton’s identities). For each \(i \geq 1 \),

\[(5)\]

\[p_i = p_{i-1}s_1 - p_{i-1}s_2 + \cdots + (-1)^i p_1 s_{i-1} + (-1)^{i+1} i s_i,\]

where \(s_i = s_i(X_1, X_2, \cdots, X_t) \) and \(p_i = p_i(X_1, X_2, \cdots, X_t) \).

Let \(Q = \{q_1, q_2, \cdots, q_t\} \), \(N = \{n_1, n_2, \cdots, n_t\} \).

Theorem 3.3. Let \(\lambda = -f_Q(\alpha) \) and \(\mu = -f_N(\alpha) \). Then

(i) \(\lambda + \mu = 1 \).

(ii) If \(n = 4k - 1 \), then \(\lambda \) and \(\mu \) satisfy \(x^2 - x + k = 0 \).

(iii) If \(n = 4k + 1 \), then \(\lambda \) and \(\mu \) satisfy \(x^2 - x - k = 0 \).

Proof. (i) We have that

\[0 = \alpha^{n-1} + \alpha^{n-2} + \cdots + \alpha + 1 = f_Q(\alpha) + f_N(\alpha) + 1.\]

Thus \(\lambda + \mu = 1 \).
By Theorem 3.1(i) we have that
\[\lambda^2 - \lambda = f_Q(\alpha)^2 + f_Q(\alpha) = \frac{1}{4}k(f_Q(\alpha) + f_N(\alpha)) = k(-1) = -k. \]
Similarly, we have that
\[\mu^2 - \mu = f_N(\alpha)^2 + f_N(\alpha) = \frac{1}{4}k(f_Q(\alpha) + f_N(\alpha)) = k(-1) = -k. \]
(iii) It can be proved in a similar manner.

Let
\[s_i(\alpha^Q) = s_i(\alpha^{q_1}, \alpha^{q_2}, \cdots, \alpha^{q_t}), \quad s_i(\alpha^N) = s_i(\alpha^{n_1}, \alpha^{n_2}, \cdots, \alpha^{n_t}), \]
\[p_i(\alpha^Q) = p_i(\alpha^{q_1}, \alpha^{q_2}, \cdots, \alpha^{q_t}), \quad p_i(\alpha^N) = p_i(\alpha^{n_1}, \alpha^{n_2}, \cdots, \alpha^{n_t}). \]

Theorem 3.4. Let \(Q_{p^\infty}(X) = a_0X^t + a_1X^{t-1} + \cdots + a_t \). Then \(a_0 = 1, \ a_1 = \lambda \) and the other coefficients \(a_i \in Z_{p^\infty} \) can be determined inductively by the formula
\[a_i = -\sum_{j=0}^{i} p_i a_0 + p_{i-1}a_1 + p_{i-2}a_2 + \cdots + p_1a_{i-1}, \]
where \(a_i = s_i(\alpha^Q) \) and \(p_i = p_i(\alpha^Q) \). Moreover each \(a_i \) is linear in \(\lambda \), i.e. has the form \(\alpha_i \lambda + \beta_i \). Analogous statements hold for \(N_{p^\infty}(X) = b_0X^t + b_1X^{t-1} + \cdots + b_t \) with \(b_0 = 1, b_1 = \mu \). In particular, \(N_{2^\infty}(X) \) can be obtained by replacing \(\lambda \) in \(Q_{p^\infty}(X) \) by \(\mu = 1 - \lambda \).

Proof. The formula for \(a_i \) follows from the Newton’s identities (5) and the fact that \(a_i = (-1)^i s_i \). We will use the induction to prove that each \(a_i \) is linear in \(\lambda \). \(a_1 = \lambda \) has the right form. Suppose \(a_j \) are all linear in \(\lambda \). Then \(s_j = (-1)^ja_j \) is linear in \(\lambda \). Note that each \(p_{i-j} \) is linear in \(\lambda \) by Lemma 4.1. Since \(\lambda^2 \) is linear in \(\lambda \) by Theorem 3.3, each \(p_{i-j}s_j \) is linear, and thus it is now clear from the formula that \(a_i \) is linear in \(\lambda \).

4. Examples

Proposition 4.1. (i) \(p_i(\alpha^Q) = \begin{cases} -\lambda, & i \in Q, \\ \lambda - 1, & i \in N. \end{cases} \)
(ii) \(p_i(\alpha^N) = \begin{cases} -\mu, & i \in Q, \\ \mu - 1, & i \in N. \end{cases} \)

Proof. (i) If \(i \in Q \), then \(p_i(\alpha^Q) = f_Q(\alpha) = -\lambda \). If \(i \in N \), then \(p_i(\alpha^Q) = f_N(\alpha) = \lambda - 1 \).

(ii) If \(i \in Q \), then \(p_i(\alpha^N) = f_N(\alpha) = -\mu \). If \(i \in N \), then \(p_i(\alpha^N) = f_Q(\alpha) = 1 - \mu \). \(\square \)

Example 4.2. We consider the case \(n = 7, p = 2 \). Then \(k = 2 \) so that \(7 = 4k - 1 \), and \(\lambda \) is a 2-adic number satisfying

\[
\lambda^2 - \lambda + k = \lambda^2 - \lambda + 2 = 0.
\]

Its 2-adic expansion is chosen to be

\[
\lambda = 0 + 2^1 + 2^2 + 2^5 + 2^7 + 2^8 + 2^{10} + 2^{11} + 2^{12} + 2^{15} + 2^{16} + 2^{17} + \cdots .
\]

We have \(Q = \{1, 4, 2\} \) and \(N = \{3, 5, 6\} \). Thus \(p_1 = p_2 = p_4 = -\lambda \), and \(p_3 = p_5 = p_6 = \lambda - 1 \). Write

\[
Q_{2^\infty}(X) = X^3 + a_1X^2 + a_2X + a_3.
\]

Then \(a_1 = \lambda \) and

\[
a_2 = -\frac{p_2a_0 + p_1a_1}{2} = -\frac{-\lambda - \lambda^2}{2} = \frac{\lambda + \lambda^2}{2} = \lambda - 1,
\]

\[
a_3 = -\frac{p_3a_0 + p_2a_1 + p_1a_2}{3} = -\frac{\lambda - 1 - \lambda^2 - \lambda^2 + \lambda}{3} = -1,
\]

and hence

\[
Q_{2^\infty}(X) = X^3 + \lambda X^2 + (\lambda - 1)X - 1.
\]

The polynomial \(Q_{2^\infty}(X) \) is a generator for the 2-adic Hamming code of length 7. By Theorem 2.2 or Theorem 3.4,

\[
N_{2^\infty}(X) = -\bar{Q}_{2^\infty}(X) = X^3 - (\lambda - 1)X^2 - \lambda X - 1,
\]

and

\[
X^7 - 1 = (X - 1)Q_{2^\infty}(X)N_{2^\infty}(X).
\]

Example 4.3. We next consider the case \(n = 23, p = 2 \). Then \(k = 6 \) so that \(23 = 4k - 1 \), and \(\lambda \) is a 2-adic number satisfying

\[
\lambda^2 - \lambda + 6 = 0.
\]

Its 2-adic expansion is chosen to be

\[
\lambda = 0 + 2^1 + 2^3 + 2^5 + 2^6 + 2^7 + 2^8 + 2^{11} + 2^{14} + 2^{16} + 2^{17} + \cdots .
\]
We have \(Q = \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\} \) and recall that \(p_i = -\lambda \) for \(i \in Q \) and \(p_i = \lambda - 1 \) for \(i \in N \). Write
\[
Q_{2\infty}(X) = X^{11} + a_1X^{10} + a_2X^9 + a_3X^8 + a_4X^7 + a_5X^6 \\
+ a_6X^5 + a_7X^4 + a_8X^3 + a_9X^2 + a_{10}X + a_{11}.
\]
Then \(a_1 = \lambda \) and
\[
a_2 = -\frac{p_2a_0 + p_1a_1}{2} = -\frac{-\lambda - \lambda^2}{2} = \frac{\lambda + \lambda^2}{2} = \lambda - 3 \\
a_3 = -\frac{p_3a_0 + p_2a_1 + p_1a_2}{3} = -\frac{-\lambda + (-\lambda)\lambda + (-\lambda)(\lambda - 3)}{3} = -4 \\
a_4 = -\frac{p_4a_0 + p_3a_1 + p_2a_2 + p_1a_3}{4} \\
= -\frac{-\lambda + (-\lambda)\lambda + (-\lambda)(\lambda - 3) + (-\lambda)(-4)}{4} = -\lambda - 3
\]
and
\[
Q_{2\infty}(X) = X^{11} + \lambda X^{10} + (\lambda - 3)X^9 - 4X^8 - (\lambda + 3)X^7 - (2\lambda + 1)X^6 \\
-(2\lambda - 3)X^5 - (\lambda - 4)X^4 + 4X^3 + (\lambda + 2)X^2 + (\lambda - 1)X - 1.
\]
The polynomial \(Q_{2\infty}(X) \) is a generator for the 2-adic Golay code of length 23. By Theorem 2.2,
\[
N_{2\infty}(X) = -Q_{2\infty}(X) = X^{11} - (\lambda - 1)X^{10} - (\lambda + 2)X^9 - 4X^8 + (\lambda - 4)X^7 \\
+(2\lambda - 3)X^6 + (2\lambda + 1)X^5 + (\lambda + 3)X^4 + 4X^3 - (\lambda - 3)X^2 - \lambda X - 1,
\]
and
\[
X^{23} - 1 = (X - 1)Q_{2\infty}(X).N_{2\infty}(X).
\]
Example 4.4. Case \(n = 11, p = 3 \). Then \(k = 3 \) so that \(11 = 4k - 1 \), and \(\lambda \) is a 3-adic number satisfying
\[
\lambda^2 - \lambda + 3 = 0.
\]
Its 3-adic expansion is chosen to be
\[
\lambda = 0 + 3^1 + 3^2 + 2\cdot 3^3 + 2\cdot 3^4 + 2\cdot 3^6 + 3^8 + 2\cdot 3^9 + 2\cdot 3^{11} + 2\cdot 3^{13} + 3^{14} + 2\cdot 3^{15} + \cdots.
\]
We have \(Q = \{1, 3, 4, 5, 9\} \) and \(N = \{2, 6, 7, 8, 10\} \). Thus \(p_1 = p_3 = p_4 = p_5 = -\lambda \), and \(p_2 = \lambda - 1 \). Write
\[
Q_{3\infty}(X) = X^5 + a_1X^4 + a_2X^3 + a_3X^2 + a_4X + a_5.
\]
Generator polynomials of the p-adic quadratic residue codes

$a_1 = \lambda$

$a_2 = -\frac{p_2a_0 + p_1a_1}{2} = -\frac{(\lambda - 1) + (\lambda)\lambda}{2} = -1$

$a_3 = -\frac{p_3a_0 + p_2a_1 + p_1a_2}{3} = -\frac{-\lambda + (\lambda - 1)\lambda + (-\lambda)(-1)}{3} = 1$

$a_4 = -\frac{p_4a_0 + p_3a_1 + p_2a_2 + p_1a_3}{4}$

$= -\frac{-\lambda + (-\lambda)\lambda + (\lambda - 1)(-1) + (-\lambda)}{4} = \lambda - 1$

$a_5 = -\frac{p_5a_0 + p_4a_1 + p_3a_2 + p_2a_3 + p_1a_4}{5}$

$= -\frac{-\lambda + (-\lambda)\lambda + (-\lambda)(-1) + (\lambda - 1) + (-\lambda)(\lambda - 1)}{5} = -1$

and hence

$Q_{3\infty}(X) = X^5 + \lambda X^4 - X^3 + X^2 + (\lambda - 1)X - 1.$

The polynomial $Q_{3\infty}(X)$ is a generator for the 3-adic Golay code of length 11. By Theorem 2.2,

$N_{3\infty}(X) = -Q_{3\infty}(X) = X^5 - (\lambda - 1)X^4 - X^3 + X^2 - \lambda X - 1,$

and

$X^1\lambda - 1 = (X - 1)Q_{3\infty}(X)N_{3\infty}(X).$

Example 4.5. Case $n = 41$, $p = 2$. Then $k = 10$ so that 41 = $4k + 1$, and λ is a 2-adic number satisfying

$\lambda^2 - \lambda - 10 = 0.$

Its 2-adic expansion is chosen to be

$\lambda = 0 + 2^1 + 2^3 + 2^4 + 2^7 + 2^{10} + 2^{11} + 2^{14} + 2^{15} + \ldots$

and we can compute that

$Q_{2\infty}(X) = X^{20} + \lambda X^{19} + (\lambda + 5)X^{18} + (2\lambda + 7)X^{17}$

$+ (4\lambda + 5)X^{16} + (3\lambda + 13)X^{15} + (4\lambda + 13)X^{14} + (6\lambda + 8)X^{13}$

$+ (4\lambda + 16)X^{12} + (4\lambda + 15)X^{11} + (6\lambda + 7)X^{10} + (4\lambda + 15)X^9$

$+ (4\lambda + 16)X^8 + (6\lambda + 8)X^7 + (4\lambda + 13)X^6 + (3\lambda + 13)X^5$

$+ (4\lambda + 5)X^4 + (2\lambda + 7)X^3 + (\lambda + 5)X^2 + \lambda X + 1$
and by Theorem 3.4

\[N_{2\infty}(X) = X^{20} - (\lambda - 1)X^{19} - (\lambda - 6)X^{18} - (2\lambda - 9)X^{17} \]
\[- (4\lambda - 9)X^{16} - (3\lambda - 16)X^{15} - (4\lambda - 17)X^{14} - (6\lambda - 14)X^{13} \]
\[- (4\lambda - 20)X^{12} - (4\lambda - 19)X^{11} - (6\lambda - 13)X^{10} - (4\lambda - 19)X^9 \]
\[- (4\lambda - 20)X^8 - (6\lambda - 14)X^7 - (4\lambda - 17)X^6 - (3\lambda - 16)X^5 \]
\[- (4\lambda - 9)X^4 - (2\lambda - 9)X^3 - (\lambda - 6)X^2 - (\lambda - 1)X + 1. \]

The polynomial \(Q_{2\infty}(X) \) is a generator for the 2-adic quadratic residue code of length 41.

References