
Kangweon-Kyungki Math. Jour. 13 (2005), No. 1, pp. 113–122

ITERATIVE ALGORITHMS AND DOMAIN

DECOMPOSITION METHODS IN PARTIAL

DIFFERENTIAL EQUATIONS

Jun Yull Lee

Abstract. We consider the iterative schemes for the large sparse
linear system to solve partial differential equations. Using spectral
radius of iteration matrices, the optimal relaxation parameters and
good parameters can be obtained. With those parameters we com-
pare the effectiveness of the SOR and SSOR algorithms. Applying
Crank-Nicolson approximation, we observe the error distribution ac-
cording to domain decomposition. The number of processors due to
domain decomposition affects time and error. Numerical experi-
ments show that effectiveness of SOR and SSOR can be reversed as
time size varies, which is not the usual case. Finally, these phenom-
ena suggest conjectures about equilibrium time grid for SOR and
SSOR.

1. Introduction

When one solves the system of linear equations Ax = b , where A is
a nonsingular matrix and b is a given vector, it seems natural to take
multiples of b as the approximation to the solution:

x1 ∈ Span{b}, x2 ∈ Span{b, Ab}, · · · , xk ∈ Span{b, Ab, · · · , A(k−1)b}
where k = 1, 2, 3, · · · . If it turns out that the space does not contain
a good approximate solution or if such an approximate solution cannot
be computed easily, then one might use a preconditioner M and effec-
tively solve the modified problem M−1Ax = M−1b, say x ≈ M−1b, by

Received January 30, 2005.
2000 Mathematics Subject Classification: 65F10, 65M06, 65D25.
Key words and phrases: SOR, SSOR, preconditioning, Crank-Nicolson, domain

decomposition.
This research is accomplished with Research Fund provided by Kangwon National

University, Support for 2003 Faculty Research Abroad.

114 Jun Yull Lee

generating approximate solutions x1, x2, x3, · · · satisfying

xk ∈ Span{M−1b, (M−1A)M−1b, · · · , (M−1A)(k−1)M−1b}.

Here the preconditioner M must be chosen so that such linear systems
are much easier to solve than the original problem. If different parts of
a system problem could be solved independently and then the results
somehow pieced together to the entire problem, then a loosely coupled
array of parallel processors could be used for the task. This may provide
a faster and more parallel solution method than applying a standard
iterative method directly to the large problem. This solution approach is
equivalent to using a preconditioner that involves solving on subdomains.
Domain decomposition methods fall roughly into two classes - those
using overlapping domains and those using non-overlapping domains. In
this research, we describe the preconditioners M arising from SOR and
SSOR methods, and compare the effectiveness according to run-time
and numbers of iterations. Then domain decompositions will be treated
and applied to model problems for error analysis. Then we analyze its
convergence performance according as grid sizes vary.

2. Basic Iterative Algorithms

Let us consider the following partial differential equation:

∂u

∂t
= a(x, y)

(
∂2u

∂x2 +
∂2u

∂y2

)
+b(x, y)

∂u

∂x
+c(x, y)

∂u

∂y
+d(x, y)u+f(x, y, t)

where u(x, y, t) is defined on [0, 1]× [0, 1]× [0, 1]. Using Crank-Nicolson
approximation and five point formula for Un

C , the center approximate at
n time level, the above equation is written as follows.

Un+1
C − Un

C

dt
= aC

U
n+1/2
E − 2U

n+1/2
C + U

n+1/2
W

dx2

+ aC
U

n+1/2
N − 2U

n+1/2
C + U

n+1/2
S

dy2

+ bC
U

n+1/2
E − U

n+1/2
W

2dx
+ cC

U
n+1/2
N − U

n+1/2
S

2dy

+ dCU
n+1/2
C + f

n+1/2
C .

Iterative Algorithms and Domain Decomposition Methods in PDE 115

Here aC means a(x, y) at the centered point C and the other notations
are as such. Then we simplify the linear system:

λCUn+1
C + λEUn+1

E + λNUn+1
N + λW Un+1

W + λSUn+1
S

= (2− λC)Un
C − λEUn

E − λNUn
N − λW Un

W − λSUn
S + 1

2
(fn+1

C + fn
C)dt.

Letting α = aC(dt
dx2 + dt

dy2), the λ’s are as follows:

λC =1 + α− 1

2
dCdt,

λE =− 1

2
aC

dt

dx2
− 1

4
bC

dt

dx
,

λN =− 1

2
aC

dt

dy2
− 1

4
cC

dt

dy
,

λW =− 1

2
aC

dt

dx2
+

1

4
bC

dt

dx
,

λS =− 1

2
aC

dt

dy2
+

1

4
cC

dt

dy
.

Therefore, we have a linear system

AU (n+1) = BU (n) + f (n+1/2) + boundary condition,

which is of the form Au = b, where U (n), f (n+1/2) and the boundary
condition are known, and U (n+1) is unknown.

Now let us consider how to solve the linear system of the form Au = b.
We employ an iterative scheme for the system:

u(n+1) = Gu(n) + k

= (I −Q−1A)u(n) + Q−1b

= u(n) + Q−1(b− Au(n)).

Here, G = I − Q−1A, k = Q−1b for some nonsingular preconditioning
matrix Q. Note that the last expression should be used to implement the
iterative algorithms. It helps coding and computation. Preconditioning
matrix Q is chosen to be a simply easily invertible matrix, such as a
diagonal, tridiagonal, lower triangular, upper triangular, or a product of
such matrices, and is usually chosen so that Q−1A has a better condition
number than A. Now the matrix A in the system will be symmetric and
positive definite(SPD) in this paper. Let A be written as

A = D − CL − CU ,

116 Jun Yull Lee

where D or DA is a diagonal matrix with the same diagonal elements as
A. CL and CU are strictly lower and strictly upper tridiagonal matrices,
respectively. Let us denote the preconditioning matrices QJ , QGS, QSOR,
QSSOR for the Jacobi, Gauss-Seidel, successive over-relaxation (SOR),
and symmetric SOR(SSOR) method, respectively. Then they are defined
as follows:

Q−1
J = D−1,

Q−1
GS = (D − CL)−1,

Q−1
SOR = (

1

ω
D − CL)−1,

Q−1
SSOR =

(
ω

2− ω
(
1

ω
D − CL)D−1(

1

ω
D − CU)

)−1

.

The iterative matrices for such preconditioning matrices are given below.

GJ = I −D−1A,

GGS = I − (D − CL)−1A,

Lω = GSOR = I − (
1

ω
D − CL)−1A,

Sω = GSSOR = I −
(

(
1

ω
D − CL)(

2− ω

ω
D)−1(

1

ω
D − CU)

)−1

A.

In the above, parameter ω is a relaxation factor.

3. Crank-Nicolson Approximation Method

Let us consider the elliptic equation

∂2u

∂x2 +
∂2u

∂y2 = 0.

When Crank-Nicolson approximation is adapted, the above five point
formula produces coefficient matrix H and the right−hand side matrix
BH , say Hu = BH . For this BH = I−D−1

H H, if Jacobi method is applied,

then the spectral radius ρ(GBH
J) is cos(πh), h = dx = dy, without domain

decomposition. If we decompose the domain into two stripe partitions,
then the spectral radius ρ(GBH

J) is 1/2(cos(πh) + cos(2πh)[?].

Iterative Algorithms and Domain Decomposition Methods in PDE 117

Theorem 3.1. For the SOR iterative matrix Lω of the linear system
in solving the elliptic equation, the optimum value ωopt of parameter ω
is given by

ωopt =
2

1 +

√
1− ρ(GB

J)
2

=
2

1 + sin πh
.

Then

ρ(Lω) =
1−

√
1− ρ(GB

J)
2

1 +
√

1− ρ(GB
J)2

=
1− sin πh

1 + sin πω
.

Proof. See [?].

Lemma 3.2. If λ is an eigenvalue of a matrix M , then 2α
(1+2α)

λ is an

eigenvalue of 2α
(1+2α)

M .

Proof. Since Mx = λx , 2α
(1+2α)

Mx = 2α
(1+2α)

λx.

Theorem 3.3. If we have the linear system Au = BA without a
decomposition of the domain from the parabolic equation ∂u

∂t
= ∂2u

∂x2 + ∂2u
∂y2 ,

then the spectral radius ρ(BA) of BA is

ρ(GA
J) =

2α cos(πh)

1 + 2α

where α = dt/h2, h = dx = dt/dy.

Proof. From the equation ∂u
∂t

= ∂2u
∂x2 + ∂2u

∂y2 , we have the following ap-

proximation formula.

Un+1
C − Un

C

dt
=

U
n+1/2
E − 2U

n+1/2
C + U

n+1/2
W

dx2
+

U
n+1/2
N − 2U

n+1/2
C + U

n+1/2
S

dy2

=
1

2

[
Un+1

E − 2Un+1
C + Un+1

W

dx2
+

Un
E − 2Un

C + Un
W

dx2

]

+
1

2

[
Un+1

N − 2Un+1
C + Un+1

S

dy2
+

Un
N − 2Un

C + Un
S

dy2

]
.

Now this formula gives a linear system below.

(1 + 2α)Un+1
C − 1

2
αUn+1

E − 1
2
αUn+1

N − 1
2
αUn+1

W − 1
2
αUn+1

S

= (1− 2α)Un
C + 1

2
αUn

E + 1
2
αUn

N + 1
2
αUn

W + 1
2
αUn

S .

118 Jun Yull Lee

Thus we have the coefficient matrix

A =



1 + 2α −1
2
α 0 −1

2
α 0 0 . . . 0 0

−1
2
α 1 + 2α −1

2
α 0 −1

2
α 0 . . . 0 0

. .

−1
2
α 0 0 1 + 2α −1

2
α 0 −1

2
α 0 0

. .

0 0 0 −1
2
α 0 −1

2
α 1 + 2α



= I +
1

2
α



4 −1 0 −1 0
−1 4 . . . 0 −1
.
−1 . . . −1 . . . −1
.
0 −1 4


.

We let A = I + 1
2
αB. For the system Bu = b′, the iterative matrix for

the Jacobi Method is

GB
J = I −D−1

B B = I − 1

4
B.

The Jacobi iterative matrix for the system Ax = b is, then,

GA
J = I −D−1

A A = I − 1

1 + 2α
A = I − 1

1 + 2α
(I + 1/2αB)

= (1− 1

1 + 2α
)I − α

2(1 + 2α)
B =

2α

1 + 2α
I − 2α

(1 + 2α)
(I −GB

J)

=
2α

1 + 2α
GB

J .

Therefore,

ρ(GA
J) =

2α

1 + 2α
cos(πh).

From the SSOR iterative matrix GSSOR, the eigenvalue of GSSOR are
real and nonnegative. It is known that the rate of convergence of the
SSOR method is relatively insensitive to the exact choice of ω so that a
precise optimum value of ω is not crucial. If the spectral radius of the
matrix CLCU satisfies S(CLCU) ≤ 1

4
, which is true in our model case,

Iterative Algorithms and Domain Decomposition Methods in PDE 119

then a good value of ω is given by ω = 2

1+
√

2(1−ρ(GB
J))

. Also with the

choice of ω, the spectral radius of ρ(Sω) satisfies

ρ(Sω) ≤
(

1−
√

1− ρ(GB
J)

2

)
/

(
1 +

√
1− ρ(GB

J)

2

)
.

4. Domain Decomposition

Now we describe domain decomposition scheme. Stripwise partitions
of the domain yield rather unsophisticated as well as efficient data struc-
ture and coding. Explicit interface approximation is applied. Then the
system we considered has the following interface points formula. Here
M ,j, n mean the x-interface level, the y-interface level, and the time
level, respectively.

Un+1
M,j = a(xM , yj)

[Un
M+1,j − 2Un

M,j + Un
M−1,j

dx2

+
Un

M,j+1 − 2Un
M,j + Un

M,j−1

dy2

]
dt

+ b(xM , yj)
Un

M+1,j − Un
M−1,j

2dx
dt

+ c(xM , yj)
Un

M,j+1 − Un
M,j−1

2dy
dt

+ (1 + d(xM , yj)dt)Un
M,j + f(xM , yj)dt.

Then, using Crank-Nicolson approximation, we predict interior points
using iterative methods discussed in section 2. After that, we solve the
linear system

λ
′

CUn+1
M,j + λ

′

EUn+1
M,j−1 + λ

′

W Un+1
M,j+1 = Un

M,j − λ
′

SUn
M−1,j − λ

′

NUn
M+1,j

to correct interface values implicitly. For example, we can use Crout’s
method to correct interface values. Usually, Crank-Nicolson approxi-
mation gives more accurate result than forward difference formula in
interface predicting, interior approximating, and correcting phases.

120 Jun Yull Lee

5. Numerical Experiments

In the stripwise decomposition of domain, the plane is decomposed in
regular strips which are then assigned to individual processors. Again
our model problem is of the form

∂u

∂t
=

(
∂2u

∂x2 +
∂2u

∂y2

)
+ b(x, y)

∂u

∂x
+ c(x, y)

∂u

∂y
+ d(x, y)u,

where initial values and boundary values take exact values. We know
that the exact solution is u = e−t sin x cos y if b(x, y) = sin x sin y,
c(x, y) = cos x cos y, and d(x, y) = 1.

Different methods were programmed to approximate the solution of
the model problem. First, we explicitly predict interface point values.
Then, we solve linear systems using iterative methods. Later implicit
correction were employed for those interface points. Crank-Nicolson ap-
proximation is very useful in finite difference formula.

5.1. Domain Decomposition and Error Distribution. The follow-
ing table shows the performance of convergence and stability of the SOR
algorithm when several processors were considered in the elliptic model
problem, b(x, y) = c(x, y) = d(x, y) = 0.

of processors 1 2 4 10 20
Time size cpu time cpu time cpu time cpu time cpu time

0.1 55.72012 24.03456 4.917070 3314766 2.894161
0.05 72.37407 35.83152 8.452153 6.379173 5.588035
0.02 86.91498 51.02337 16.60388 15.26195 13.30914
0.01 93.51447 58.37394 32.11618 29.47238 25.60682

We can see the error distributions at last time level for 2-, 4-, 10-
processors upon domain decomposition, respectively. SOR iteration
methods were used to solve the five-diagonal linear system of equations
for the case, b(x, y) = sin x sin y, c(x, y) = cos x cos y, and d(x, y) = 1.
It shows the errors at y = 0.5 and at the last time level.

5.2. Speedup and Efficiency. We can speedup using more processors
as before. Also we can adapt more efficient algorithms such as SOR
and SSOR with appropriate parameters. Next table shows the optimal
parameters for SOR and good parameters for SSOR with their spectral

Iterative Algorithms and Domain Decomposition Methods in PDE 121

radii with the number of iterations to converge when b(x, y) = c(x, y) =
d(x, y) = 0.

dt=0.01, h = dx = dy
h 0.25 0.1 0.05 0.01
α 0.16 1 4 100

ρ(GJ
A) 0.17142 0.634038 0.877945 0.994534

SOR ρ(Lω) 0.079605 0.365 0.16379 0.904
ωopt 1.00746(7) 1.12784(18) 1.35248(36) 1.81092(184)

SSOR ρ(Sω) 0.04879 0.172455 0.38253 0.81996
ωb 0.874391(8) 1.07786(14) 1.33862(24) 1.81068(116)

The number in () means the number of iterations to converge.

5.3. Time mesh size and Effectiveness of SOR and SSOR. As
time grid size varies, for fixed h = dx = dy, the run-time effective-
ness for SOR and SSOR methods were tested. In general, it is believed
that SSOR is slower than SOR method. But the following table with
b(x, y) = sin x sin y, c(x, y) = cos x cos y, and d(x, y) = 1 shows that the
effectiveness changes depend on time size.

h=1/50 h=1/200 h=1/500
dt SOR SSOR dt SOR SSOR dt SOR SSOR

.0297 .1803 .2103 .0340 15.9630 16.5438 .0400 323.7255 368.2896

.0298 .1803 .1903 .0320 15.9630 16.0030 .0350 323.7255 368.2896

.0299 .1702 .1702 .0315 15.7727 15.7727 .0340 312.6295 312.4993

.0300 .1803 .1702 .0310 15.7727 15.6124 .0330 314.7826 308.5236

.0301 .1803 .1702 .0305 15.7727 15.4823 .0310 314.1417 297.5479

From the above tables we can conjecture as follows:

Conjecture 5.1. For a fixed h, there is a time size dtb such that
(i) if dt > dtb, then the work on SOR is less than the work on SSOR,
and (ii) if dt < dtb, then the work on SOR is greater than the work on
SSOR

Conjecture 5.2. For a fixed h, there is a time size dtb such that if
dt < dtb, then we can have ρ(Lω) > ρ(Sω).

References

[1] J. L. Buchanan and P. R. Turner, Numerical Methods and Analysis, McGraw–
Hill, Singapore, (1992).

[2] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadel-
phia, (1997).

122 Jun Yull Lee

[3] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press,
N.Y., (1981).

[4] T. Mai and X. Chen, Empirical Study of Domain Decomposition Algorithm for
Solving Parabolic Partial Differential Equations, Preprint

[5] T. Mai, X. Chen and D. Harpern, SJSOR Additive Iterative Methods for Solving
Linear Systems, Proceedings of the 4th IMACS International Symposium on
Iterative Methods, (1999), 77–84.

[6] D. E. Womble, A Time–Stepping Algorithm for Parallel Computers, SIAM J.
Sci. Stat. Comput., Vol 11 (5) (1990), 824–837.

[7] D. M. Young, Iterative Solution of Large Linear Systems, Acamedic Press, N.Y.,
(1971).

[8] D. M. Young and T. Mai, Iterative Algoritms and Software for Solving Large
Sparse Linear Systems, Communications in Applied Numerical Methods,4
(1988), 435–456.

[9] Y. Saad, Iterative Methods for Sparse linear systems, PWS publishing Co.,
Boston, (1996).

Department of Mathematics Education
Kangwon National University
Chunchon 200-701, Korea
E-mail : jylee@kangwon.ac.kr

