Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 7–11

FUZZY K-PROXIMITY MAPPING

Kuo-Duok Park

ABSTRACT. This paper is devoted to the study of the role of fuzzy proximity spaces. We define a fuzzy K-proximally continuous mapping based on the fuzzy K-proximity and prove some of its properties.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [8] in 1965. This idea was used by Chang [1], who in 1968 defined fuzzy topological spaces, and by Lowen [4], who in 1974 defined fuzzy uniform spaces. Furthermore, Katsaras [2], who in 1979, defined fuzzy proximities, on the base of the axioms suggested by Efremovič[6].

In this paper we try to characterize the fuzzy K-proximally continuous based on the fuzzy K-proximity.

2. Preliminaries

As a preparation, we briefly review some basic definitions concerning a fuzzy proximity space. Throughout this paper, X is reserved to denote a nonempty set and let I^X be the collection of all mappings from X to the unit closed interval I = [0, 1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu, \rho \in I^X$, the join $\mu \lor \rho$, and the meet $\mu \land \rho$ of μ and ρ defined as followings: For any $x \in X$, $(\mu \lor \rho)(x) =$ $\sup\{\mu(x), \rho(x)\}$ and $(\mu \land \rho)(x) = \inf\{\mu(x), \rho(x)\}$, respectively. And $\mu \leq \rho$ if for each $x \in X$, $\mu(x) \leq \rho(x)$. The complement μ^c of a fuzzy set μ in X is $1 - \mu$ defined by $\mu^c(x) = (1 - \mu)(x) = 1 - \mu(x)$ for

Received November 28, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: fuzzy proximity space, fuzzy K-proximity space, fuzzy K-proximally continuous.

This work was supported by the research program of Dongguk University.

Kuo-Duok Park

each $x \in X$. 0 and 1 denote constant mappings all of X to 0 and 1, respectively. Now we give the definition of a fuzzy topology.

DEFINITION 2.1. A fuzzy topology on X is a subset α of I^X which satisfies the following conditions:

- (1) (FT1) $0, 1 \in \alpha$.
- (2) (FT2) If $\mu, \rho \in \alpha$, then $\mu \wedge \rho \in \alpha$.
- (3) (FT3) If $\mu_i \in \alpha$ for each $i \in A$, then $\sup_{i \in A} \mu_i \in \alpha$.

The pair (X, α) is called a fuzzy topological space, of its for short.

In the following we first define a fuzzy proximity space and a fuzzy point. Let δ be a relation on I^X , i.e., $\delta \subset I^X \times I^X$. The facts that $(\mu, \rho) \in \delta$ and $(\mu, \rho) \notin \delta$ are denoted by $\mu \delta \rho$ and $\mu \overline{\delta} \rho$, respectively.

DEFINITION 2.2. A relation δ on I^X is called a fuzzy proximity if δ satisfies the following conditions :

- (1) (FP1) $\mu\delta\rho$ implies $\rho\delta\mu$.
- (2) (FP2) $(\mu \lor \rho)\delta\sigma$ if and only if $\mu\delta\sigma$ or $\rho\delta\sigma$.
- (3) (FP3) $\mu\delta\rho$ implies $\mu\neq 0$ and $\rho\neq 0$.
- (4) (FP4) $\mu \overline{\delta} \rho$ implies that there exists a $\rho \in I^X$ such that $\mu \overline{\delta} \sigma$ and $(1 - \sigma) \overline{\delta} \rho$.
- (5) (FP5) $\mu \wedge \rho \neq 0$ implies $\mu \delta \rho$.

The pair (X, δ) is called a fuzzy proximity space.

DEFINITION 2.3. A fuzzy set in X is called a fuzzy point if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\gamma(0 < \gamma < 1)$, we denote this fuzzy point by x_{γ} , where the point x is called its support.

DEFINITION 2.4. The fuzzy point x_{γ} is said to be contained in a fuzzy set μ , or to belong to μ , denoted by $x_{\gamma} \in \mu$, if $\gamma < \mu(x)$. Evidently, every fuzzy set μ can be expressed as the union of all the fuzzy points which belong to μ .

We introduce a fuzzy K-proximity.

DEFINITION 2.5. A relation δ on I^X is called a fuzzy K-proximity if δ satisfies the following conditions:

- (1) (FK1) $x_{\gamma}\delta(\mu \vee \rho)$ if and only if $x_{\gamma}\delta\mu$ or $x_{\gamma}\delta\rho$.
- (2) (FK2) $x_{\gamma}\overline{\delta}0$ for all x_{γ} .

8

- (3) (FK3) $x_{\gamma} \in \mu$ implies $x_{\gamma} \delta \mu$.
- (4) (FK4) $x_{\gamma}\overline{\delta}\mu$ implies that there exists a $\rho \in I^X$ such that $x_{\gamma}\overline{\delta}\rho$ and $y_{\gamma}\overline{\delta}\mu$ for all $y_{\gamma} \in (1-\rho)$.

The pair (X, δ) is called a fuzzy K-proximity space.

One can easily show that the fuzzy proximity on I^X implies the fuzzy K-proximity on I^X .

Now we shall introduce the fuzzy proximity δ_1 from the fuzzy K-proximity δ replacing the axiom (FK4) in the fuzzy K-proximity by the stronger one.

DEFINITION 2.6. A relation δ on I^X is called the fuzzy proximity if δ satisfies the axioms (FP1), (FP2), (FP3) in Definition 2.2, and the modified axiom(FP4')For each $\sigma \in I^X$ there is a fuzzy point x_{γ} such that either $x_{\gamma}\delta\mu$, $x_{\gamma}\delta\sigma$ or $x_{\gamma}\delta\rho$, $x_{\gamma}\delta(1-\sigma)$, then we have $x_{\gamma}\delta\mu$ and $x_{\gamma}\delta\rho$.

DEFINITION 2.7. In a fuzzy K-proximity space (X, δ) , let δ_1 be a relation on I^X defined as follows: For each $\mu, \rho \in I^X, \mu \delta_1 \rho$ if and only if there is a fuzzy point x_{γ} such that $x_{\gamma} \delta \mu$ and $x_{\gamma} \delta \rho$.

Given a fuzzy proximity space (X, δ) , ρ may said to be a fuzzy proximity neighborhood of μ if and only if $\mu \overline{\delta}(1-\rho)$ for $\mu, \rho \in I^X$. An analogous concept, that of a fuzzy K-proximity neighborhood, can be introduced in a fuzzy K-proximity space.

DEFINITION 2.8. Let (X, δ) be a fuzzy K-proximity space. For $\mu \in I^X$, we say that μ is a δ -neighborhood of a fuzzy point x_{γ} (in symbols $x_{\gamma} \ll \mu$) if $x_{\gamma}\overline{\delta}(1-\mu)$.

3. Fuzzy K-proximally continuous mapping

In the study of general topological spaces, continuous mappings play an important role. A similar role is played by uniformly continuous mappings in uniform space. Their analogue in the theory of fuzzy K-proximity spaces is the concept of fuzzy K-proximity (or fuzzy Kproximally continuous) mapping.

DEFINITION 3.1. Let (X, δ_1) and (Y, δ_2) be two fuzzy K-proximity spaces. A mapping $f : X \to Y$ is said to be a fuzzy K-proximity Kuo-Duok Park

mapping if $x_{\gamma}\delta_{1}\mu$ implies $f(x_{\gamma})\delta_{2}f(\mu)$. Equivalently, f is a fuzzy Kproximity mapping if $x_{\gamma}\overline{\delta_{2}}\mu$ implies $f^{-1}(x_{\gamma})\overline{\delta_{1}}f^{-1}(\mu)$ or $x_{\gamma} \ll_{2}\mu$ implies $f^{-1}(x_{\gamma}) \ll_{1} f^{-1}(\mu)$.

It is easy to see that the composition of two fuzzy K-proximity mappings is a fuzzy K-proximity mapping.

The next theorem is similar to the well-known result: a uniformly continuous mapping is continuous with respect to the induced topologies.

THEOREM 3.1. A fuzzy K-proximity mapping $f : (X, \delta_1) \to (Y, \delta_2)$ is continuous with respect to $\mathcal{T}(\delta_1)$ and $\mathcal{T}(\delta_2)$.

Proof. The result of the theorem follows from the fact that $x_{\gamma}\delta_{1}\mu$ implies $f(x_{\gamma})\delta_{2}f(\mu)$. i.e. $f(\overline{\mu}) \subset \overline{f(\mu)}$.

REMARK. The converse of Theorem 3.1. is false. Consider the identity mapping on X is continuous with respect to $\mathcal{T}(\delta_1)$ and $\mathcal{T}(\delta_2)$, but is not a fuzzy K-proximity mapping from (X, δ_1) to (X, δ_2) .

THEOREM 3.2. Given a mapping $f : X \to (Y, \delta_2)$, the coarsest fuzzy *K*-proximity δ_0 which may be assigned to *X* in order that *f* be fuzzy *K*-proximally continuous is defined by $x_{\gamma}\overline{\delta_0}\mu$ if and only if there exists a $\rho \in I^Y$ such that $f(x_{\gamma})\overline{\delta_2}(1-\rho)$ and $f^{-1}(\rho) \in (1-\mu)$.

Proof. We first verify that δ_0 is a fuzzy K-proximity on X.

(FK1) $x_{\gamma}\overline{\delta_{0}}(\mu \vee \rho)$ implies the existence of a $\gamma \in I^{Y}$ such that $f(x_{\gamma})\overline{\delta_{2}}(1-\gamma)$ and $f^{-1}(\gamma) \in (1-(\mu \vee \rho))$, from which $x_{\gamma}\overline{\delta_{0}}\mu$ and $x_{\gamma}\overline{\delta_{0}}\rho$ follow. If $x_{\gamma}\overline{\delta_{0}}\mu$ and $x_{\gamma}\overline{\delta_{0}}\rho$, there exist γ_{1} and γ_{2} such that $f(x_{\gamma})\overline{\delta_{2}}(1-\gamma_{1}), f(x_{\gamma})\overline{\delta_{2}}(1-\gamma_{2}), f^{-1}(\gamma_{1}) \in (1-\mu)$ and $f^{-1}(\gamma_{2}) \in (1-\rho)$. Therefore, $f(x_{\gamma})\overline{\delta_{2}}(1-(\gamma_{1}\vee\gamma_{2}))$ and $f^{-1}(\gamma_{1}\vee\gamma_{2}) \in (1-(\mu \vee \rho))$, i.e. $x_{\gamma}\overline{\delta_{0}}(\mu \vee \rho)$.

(FK2) It is clear that $x_{\gamma}\overline{\delta_0}0$ for all x_{γ} .

(FK3) If $x_{\gamma}\overline{\delta_{0}}\mu$, then there exists a $\rho \in I^{Y}$ such that $f(x_{\gamma})\overline{\delta_{2}}(1-\rho)$ and $f^{-1}(\rho) \in (1-\mu)$. Therefore, $f(x_{\gamma}) \notin (1-\rho)$ and $f^{-1}(f(x_{\gamma})) \notin f^{-1}(1-\rho)$. Since $x_{\gamma} \in f^{-1}(f(x_{\gamma}))$ and $\mu \in f^{-1}(1-\rho)$, we have $x_{\gamma} \notin \mu$.

10

(FK4) If $x_{\gamma}\overline{\delta_{0}}\mu$, then there exists a $\rho \in I^{Y}$ such that $f^{-1}(\rho) \in (1-\mu)$ and $f(x_{\gamma})\overline{\delta_{2}}(1-\rho)$. This latter and (FK4) together assure the existence of a $\gamma \in I^{Y}$ such that $f(x_{\gamma})\overline{\delta_{2}}\gamma$ and $y_{\gamma}\overline{\delta_{2}}(1-\rho)$ for all $y_{\gamma} \in (1-\gamma)$. Let $\alpha = f^{-1}(\gamma)$. Since $f(x_{\gamma})\overline{\delta_{2}}\gamma$, we can get that $x_{\gamma}\overline{\delta_{0}}\alpha$. As $f(1-\alpha) \in (1-\gamma)\overline{\delta_{2}}(1-\rho)$ and $f^{-1}(\rho) \in (1-\gamma)$, we can have that $y_{\gamma}\overline{\delta_{0}}\mu$ for all $y_{\gamma} \in (1-\alpha)$.

In order to show that $f: (X, \delta_0) \to (Y, \delta_2)$ is fuzzy K-proximally continuous, suppose that $f(x_{\gamma})\overline{\delta_2}f(\mu)$. Since $f(x_{\gamma}) \ll (1-f(\mu))$, there exists a $\rho \in I^Y$ such that $f(x_{\gamma}) \ll \rho \ll (1-f(\mu))$. Thus $f(x_{\gamma})\overline{\delta_2}(1-\rho)$ and $f^{-1}(\rho) \in (1-\mu)$, i.e. $x_{\gamma}\overline{\delta_0}\mu$.

It remains to show that if δ_1 is any fuzzy K-proximity on X such that $f: (X, \delta_1) \to (Y, \delta_2)$ is fuzzy K-proximally continuous, then δ_1 is finer than δ_0 . If $x_\gamma \overline{\delta_0} \mu$, then there exists a $\rho \in I^Y$ such that $f(x_\gamma) \overline{\delta_2}(1-\rho)$ and $f^{-1}(\rho) \in (1-\mu)$. Since f is fuzzy k-proximally continuous, $x_\gamma \overline{\delta_1}(1-f^{-1}(\rho))$, and $\mu \in (1-f^{-1}(\rho))$ implies $x_\gamma \overline{\delta_1} \mu$. Thus $\delta_1 > \delta_0$.

References

- 1. C.L. Chang, Fuzzy topological space, J. Math. Anal.Appl. 24 (1968), 182-190.
- A.K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), 100– 110.
- C.Y. Kim, K.L. Choi and Y.S. Shin, On the K-proximities, Kyungpook Mathematical Journal 13(1) (1973), 21–32.
- 4. R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370–385.
- K.D. Park, On the Fuzzy K-proximities, J. Nat.Sci. Res. Inst. Dongguk Univ. 14 (1994), 19–24.
- P-M. Pu and Y-M. Liu, Fuzzy topology 1, J. Math. Anal. Appl. 76 (1980), 571–599.
- S.A. Naimpally and B.D. Warrack, *Proximity spaces*, Cambridge Univ. Press, New York (1970).
- C.K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.
- 9. L.A. Zadeh, *Fuzzy sets*, Informs. Contr. 8 (1965), 333–353.

Department of Mathematics Dongguk University Seoul, 100-715, Korea *E-mail*: kdpark@dongguk.edu