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FUZZY K-PROXIMITY MAPPING

Kuo-Duok Park

Abstract. This paper is devoted to the study of the role of fuzzy
proximity spaces. We define a fuzzy K-proximally continuous map-
ping based on the fuzzy K-proximity and prove some of its proper-
ties.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [8] in 1965. This
idea was used by Chang [1], who in 1968 defined fuzzy topological
spaces, and by Lowen [4], who in 1974 defined fuzzy uniform spaces.
Furthermore, Katsaras [2], who in 1979, defined fuzzy proximities, on
the base of the axioms suggested by Efremovič[6].

In this paper we try to characterize the fuzzy K-proximally contin-
uous based on the fuzzy K-proximity.

2. Preliminaries

As a preparation, we briefly review some basic definitions concerning
a fuzzy proximity space. Throughout this paper, X is reserved to
denote a nonempty set and let IX be the collection of all mappings from
X to the unit closed interval I = [0, 1] of the real line. A member µ of
IX is called a fuzzy set of X. For any µ, ρ ∈ IX , the join µ∨ρ, and the
meet µ∧ρ of µ and ρ defined as followings: For any x ∈ X, (µ∨ρ)(x) =
sup{µ(x), ρ(x)} and (µ ∧ ρ)(x) = inf{µ(x), ρ(x)}, respectively. And
µ ≤ ρ if for each x ∈ X, µ(x) ≤ ρ(x). The complement µc of a fuzzy
set µ in X is 1 − µ defined by µc(x) = (1 − µ)(x) = 1 − µ(x) for
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each x ∈ X. 0 and 1 denote constant mappings all of X to 0 and 1,
respectively. Now we give the definition of a fuzzy topology.

Definition 2.1. A fuzzy topology on X is a subset α of IX which
satisfies the following conditions:

(1) (FT1) 0, 1 ∈ α.
(2) (FT2) If µ, ρ ∈ α, then µ ∧ ρ ∈ α.
(3) (FT3) If µi ∈ α for each i ∈ A, then supi∈Aµi ∈ α.

The pair (X,α) is called a fuzzy topological space, of its for short.

In the following we first define a fuzzy proximity space and a fuzzy
point. Let δ be a relation on IX , i.e., δ ⊂ IX × IX . The facts that
(µ, ρ) ∈ δ and (µ, ρ) /∈ δ are denoted by µδρ and µδρ, respectively.

Definition 2.2. A relation δ on IX is called a fuzzy proximity if
δ satisfies the following conditions :

(1) (FP1) µδρ implies ρδµ.
(2) (FP2) (µ ∨ ρ)δσ if and only if µδσ or ρδσ.
(3) (FP3) µδρ implies µ 6= 0 and ρ 6= 0.
(4) (FP4) µδρ implies that there exists a ρ ∈ IX such that µδσ

and (1− σ)δρ.
(5) (FP5) µ ∧ ρ 6= 0 implies µδρ.

The pair (X, δ) is called a fuzzy proximity space.

Definition 2.3. A fuzzy set in X is called a fuzzy point if it takes
the value 0 for all y ∈ X except one, say, x ∈ X. If its value at x is
γ(0 < γ < 1), we denote this fuzzy point by xγ , where the point x is
called its support.

Definition 2.4. The fuzzy point xγ is said to be contained in a
fuzzy set µ, or to belong to µ, denoted by xγ ∈ µ, if γ < µ(x). Evi-
dently, every fuzzy set µ can be expressed as the union of all the fuzzy
points which belong to µ.

We introduce a fuzzy K-proximity.

Definition 2.5. A relation δ on IX is called a fuzzy K-proximity
if δ satisfies the following conditions:

(1) (FK1) xγδ(µ ∨ ρ) if and only if xγδµ or xγδρ.
(2) (FK2) xγδ0 for all xγ .
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(3) (FK3) xγ ∈ µ implies xγδµ.
(4) (FK4) xγδµ implies that there exists a ρ ∈ IX such that xγδρ

and yγδµ for all yγ ∈ (1− ρ).
The pair (X, δ) is called a fuzzy K-proximity space.

One can easily show that the fuzzy proximity on IX implies the
fuzzy K-proximity on IX .

Now we shall introduce the fuzzy proximity δ1 from the fuzzy K-
proximity δ replacing the axiom (FK4) in the fuzzy K-proximity by
the stronger one.

Definition 2.6. A relation δ on IX is called the fuzzy proximity
if δ satisfies the axioms (FP1), (FP2), (FP3) in Definition 2.2, and the
modified axiom(FP4′)For each σ ∈ IX there is a fuzzy point xγ such
that either xγδµ, xγδσ or xγδρ, xγδ(1 − σ), then we have xγδµ and
xγδρ.

Definition 2.7. In a fuzzy K-proximity space (X, δ), let δ1be a
relation on IX defined as follows: For each µ, ρ ∈ IX , µδ1ρ if and only
if there is a fuzzy point xγ such that xγδµ and xγδρ.

Given a fuzzy proximity space (X, δ), ρ may said to be a fuzzy
proximity neighborhood of µ if and only if µδ(1− ρ) for µ, ρ ∈ IX . An
analogous concept, that of a fuzzy K-proximity neighborhood, can be
introduced in a fuzzy K-proximity space.

Definition 2.8. Let (X, δ) be a fuzzy K-proximity space. For µ ∈
IX , we say that µ is a δ−neighborhood of a fuzzy point xγ (in symbols
xγ ¿ µ) if xγδ(1− µ).

3. Fuzzy K-proximally continuous mapping

In the study of general topological spaces, continuous mappings play
an important role. A similar role is played by uniformly continuous
mappings in uniform space. Their analogue in the theory of fuzzy
K-proximity spaces is the concept of fuzzy K-proximity (or fuzzy K-
proximally continuous) mapping.

Definition 3.1. Let (X, δ1) and (Y, δ2) be two fuzzy K-proximity
spaces. A mapping f : X → Y is said to be a fuzzy K-proximity
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mapping if xγδ1µ implies f(xγ)δ2f(µ). Equivalently, f is a fuzzy K-
proximity mapping if xγδ2µ implies f−1(xγ)δ1f

−1(µ) or xγ ¿2 µ im-
plies f−1(xγ) ¿1 f−1(µ).

It is easy to see that the composition of two fuzzy K-proximity
mappings is a fuzzy K-proximity mapping.

The next theorem is similar to the well-known result: a uniformly
continuous mapping is continuous with respect to the induced topolo-
gies.

Theorem 3.1. A fuzzy K-proximity mapping f : (X, δ1) → (Y, δ2)
is continuous with respect to T (δ1) and T (δ2).

Proof. The result of the theorem follows from the fact that xγδ1µ

implies f(xγ)δ2f(µ). i.e. f(µ) ⊂ f(µ). ¤

Remark. The converse of Theorem 3.1. is false. Consider the
identity mapping on X is continuous with respect to T (δ1) and T (δ2),
but is not a fuzzy K-proximity mapping from (X, δ1) to (X, δ2).

Theorem 3.2. Given a mapping f : X → (Y, δ2), the coarsest fuzzy
K-proximity δ0 which may be assigned to X in order that f be fuzzy
K-proximally continuous is defined by xγδ0µ if and only if there exists

a ρ ∈ IY such that f(xγ)δ2(1− ρ) and f−1(ρ) ∈ (1− µ).

Proof. We first verify that δ0 is a fuzzy K-proximity on X.

(FK1) xγδ0(µ ∨ ρ) implies the existence of a γ ∈ IY such that
f(xγ)δ2(1 − γ) and f−1(γ) ∈ (1 − (µ ∨ ρ)), from which xγδ0µ and
xγδ0ρ follow. If xγδ0µ and xγδ0ρ, there exist γ1 and γ2 such that
f(xγ)δ2(1 − γ1), f(xγ)δ2(1 − γ2), f−1(γ1) ∈ (1 − µ) and f−1(γ2) ∈
(1−ρ). Therefore, f(xγ)δ2(1−(γ1∨γ2)) and f−1(γ1∨γ2) ∈ (1−(µ∨ρ)),
i.e. xγδ0(µ ∨ ρ).

(FK2) It is clear that xγδ00 for all xγ .

(FK3) If xγδ0µ, then there exists a ρ ∈ IY such that f(xγ)δ2(1− ρ)
and f−1(ρ) ∈ (1 − µ). Therefore, f(xγ) /∈ (1 − ρ) and f−1(f(xγ)) /∈
f−1(1−ρ). Since xγ ∈ f−1(f(xγ)) and µ ∈ f−1(1−ρ), we have xγ /∈ µ.
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(FK4) If xγδ0µ, then there exists a ρ ∈ IY such that f−1(ρ) ∈
(1 − µ) and f(xγ)δ2(1 − ρ). This latter and (FK4) together assure
the existence of a γ ∈ IY such that f(xγ)δ2γ and yγδ2(1 − ρ) for all
yγ ∈ (1− γ). Let α = f−1(γ). Since f(xγ)δ2γ, we can get that xγδ0α.
As f(1−α) ∈ (1− γ)δ2(1− ρ) and f−1(ρ) ∈ (1− γ), we can have that
yγδ0µ for all yγ ∈ (1− α).

In order to show that f : (X, δ0) → (Y, δ2) is fuzzy K-proximally
continuous, suppose that f(xγ)δ2f(µ). Since f(xγ) ¿ (1−f(µ)), there
exists a ρ ∈ IY such that f(xγ) ¿ ρ ¿ (1−f(µ)). Thus f(xγ)δ2(1−ρ)
and f−1(ρ) ∈ (1− µ), i.e. xγδ0µ.

It remains to show that if δ1 is any fuzzy K-proximity on X such that
f : (X, δ1) → (Y, δ2) is fuzzy K-proximally continuous, then δ1 is finer
than δ0. If xγδ0µ, then there exists a ρ ∈ IY such that f(xγ)δ2(1 −
ρ) and f−1(ρ) ∈ (1 − µ). Since f is fuzzy k-proximally continuous,
xγδ1(1− f−1(ρ)), and µ ∈ (1− f−1(ρ)) implies xγδ1µ. Thus δ1 > δ0.

¤
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