INTERVAL-VALUED FUZZY BG-ALGEBRAS

Arsham Borumand Saeid

ABSTRACT. In this note the notion of interval-valued fuzzy BG-algebras (briefly, i-v fuzzy BG-algebras), the level and strong level BG-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BG-subalgebras. The images and inverse images of i-v fuzzy BG-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BG-subalgebras becomes i-v fuzzy BG-algebras are studied.

1. Introduction

In 1966, Y. Imai and K. Iseki [5] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [9] J. Neggers and H. S. Kim introduced the notion of d-algebras, which is generalization of BCK-algebras and investigated relation between d-algebras and BCK-algebras. Also they introduced the notion of B-algebras [8]. In [6] C. B. Kim, H. S. Kim introduced the notion of BG-algebras which is a generalization of B-algebras. S. S. Ahn and H. D. Lee applied the fuzzy notions to BG-algebras and introduced the notions of fuzzy BG-algebras [1]. The concept of a fuzzy set, which was introduced in [11].

In [12], Zadeh made an extension of the concept of a fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-valued fuzzy set is referred to as an i-v fuzzy set, also he constructed a method of approximate inference using his i-v fuzzy sets. Biswas [2], defined interval-valued fuzzy subgroups

Received November 1, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25, 94D05, 03B52.

Key words and phrases: BG-algebra, fuzzy BG-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BG-subalgebra.

and S. M. Hong et. al. applied the notion of interval-valued fuzzy to BCI-algebras.

In the present paper, we using the notion of interval-valued fuzzy set by Zadeh and introduced the concept of interval-valued fuzzy BG-subalgebras (briefly i-v fuzzy BG-subalgebras) of a BG-algebra, and study some of their properties. We prove that every BG-subalgebra of a BG-algebra X can be realized as an i-v level BG-subalgebra of an i-v fuzzy BG-subalgebra of X, then we obtain some related results which have been mentioned in the abstract.

2. Preliminary

DEFINITION 2.1. [6] A BG-algebra is a non-empty set X with a consonant 0 and a binary operation * satisfying the following axioms:

```
(I) x * x = 0,

(II) x * 0 = x,

(III) (x * y) * (0 * y) = x,

for all x, y \in X.
```

For brevity we also call X a BG-algebra. In X we can define a binary relation \leq by $x \leq y$ if and only if x * y = 0.

Theorem 2.2. [6] In a BG-algebra X, we have the following properties:

```
(i) 0 * (0 * x) = x,

(ii) if x * y = 0, then x = y,

(iii) if 0 * x = 0 * y, then x = y,

(iv) (x * (0 * x)) * x = x,

for all x, y \in X.
```

A non-empty subset I of a BG-algebra X is called a subalgebra of X if $x * y \in I$ for any $x, y \in I$.

A mapping $f: X \longrightarrow Y$ of BG-algebras is called a BG-homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$.

We now review some fuzzy logic concept (see [11]).

Let X be a set. A fuzzy set A in X is characterized by a membership function $\mu_A: X \longrightarrow [0,1]$.

Let f be a mapping from the set X to the set Y and let B be a fuzzy set in Y with membership function μ_B . The inverse image of B, denoted

 $f^{-1}(B)$, is the fuzzy set in X with membership function $\mu_{f^{-1}(B)}$ defined by $\mu_{f^{-1}(B)}(x) = \mu_B(f(x))$ for all $x \in X$.

Conversely, let A be a fuzzy set in X with membership function μ_A . Then the image of A, denoted by f(A), is the fuzzy set in Y such that:

$$\mu_{f(A)}(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \mu_A(z) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

where $f^{-1}(y) = \{x : f(x) = y\}.$

A fuzzy set A in the BG-algebra X with the membership function μ_A is said to be have the sup property if for any subset $T \subseteq X$ there exists $x_0 \in T$ such that

$$\mu_A(x_0) = \sup_{t \in T} \mu_A(t)$$

An interval-valued fuzzy set (briefly, i-v fuzzy set) A defined on X is given by

$$A = \{(x, [\mu_A^L(x), \mu_A^U(x)])\}, \ \forall x \in X.$$

Briefly, denoted by $A = [\mu_A^L, \mu_A^U]$ where μ_A^L and μ_A^U are any two fuzzy sets in X such that $\mu_A^L(x) \leq \mu_A^U(x)$ for all $x \in X$. Let $\overline{\mu}_A(x) = [\mu_A^L(x), \mu_A^U(x)]$, for all $x \in X$ and let D[0,1] denotes the

Let $\overline{\mu}_A(x) = [\mu_A^L(x), \mu_A^U(x)]$, for all $x \in X$ and let D[0,1] denotes the family of all closed sub-intervals of [0,1]. It is clear that if $\mu_A^L(x) = \mu_A^U(x) = c$, where $0 \le c \le 1$ then $\overline{\mu}_A(x) = [c,c]$ is in D[0,1]. Thus $\overline{\mu}_A(x) \in D[0,1]$, for all $x \in X$. Therefore the i-v fuzzy set A is given by

$$A = \{(x, \overline{\mu}_A(x))\}, \ \forall x \in X$$

where

$$\overline{\mu}_A: X \longrightarrow D[0,1]$$

Now we define refined minimum (briefly, rmin) and order " \leq " on elements $D_1 = [a_1, b_1]$ and $D_2 = [a_2, b_2]$ of D[0, 1] as:

$$rmin(D_1, D_2) = [min\{a_1, a_2\}, min\{b_1, b_2\}]$$

$$D_1 \le D_2 \Longleftrightarrow a_1 \le a_2 \land b_1 \le b_2$$

Similarly we can define \geq and =.

DEFINITION 2.3. [1] Let μ be a fuzzy set in a BG-algebra. Then μ is called a fuzzy BG-subalgebra (BG-algebra) of X if

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}\$$

for all $x, y \in X$.

EXAMPLE 2.4. [1] Let $X = \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	0	1	1
1 2 3	2	2	0	2
3	3	3	3	0

Then (X, *, 0) is a BG-subalgebra.

Define a fuzzy set $\mu: X \to [0,1]$ by: $\mu(0) = \mu(1) = t_0$ and $\mu(2) = \mu(3) = t_1$ for $t_0, t_1 \in [0,1]$ with $t_0 > t_1$. Then μ is a fuzzy BG-subalgebra of X.

PROPOSITION 2.5. [3] Let f be a BG-homomorphism from X into Y and G be a fuzzy BG-subalgebra of Y with the membership function μ_G . Then the inverse image $f^{-1}(G)$ of G is a fuzzy BG-subalgebra of X.

PROPOSITION 2.6. [3] Let f be a BG-homomorphism from X onto Y and D be a fuzzy BG-subalgebra of X with the sup property. Then the image f(D) of D is a fuzzy BG-subalgebra of Y.

3. Interval-valued Fuzzy BG-algebra

From now on X is a BG-algebra, unless otherwise is stated.

DEFINITION 3.1. An i-v fuzzy set A in X is called an interval-valued fuzzy BG-subalgebras (briefly i-v fuzzy BG-subalgebra) of X if:

$$\overline{\mu}_A(x*y) \ge rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$$

for all $x, y \in X$.

EXAMPLE 3.2. Let $X = \{0, 1, 2, 3\}$ be a set with the following table:

Then X is a BG-algebra.

Define $\overline{\mu}_A$ as:

$$\overline{\mu}_A(x) = \begin{cases} [0.3, 0.9] & \text{if } x \in \{0, 2\} \\ [0.1, 0.6] & \text{otherwise} \end{cases}$$

It is easy to check that A is an i-v fuzzy BG-subalgebra of X.

LEMMA 3.3. If A is an i-v fuzzy BG-subalgebra of X, then for all $x \in X$

$$\overline{\mu}_A(0) \ge \overline{\mu}_A(x).$$

Proof. For all $x \in X$, we have

$$\begin{array}{lll} \overline{\mu}_{A}(0) & = & \overline{\mu}_{A}(x*x) \geq rmin\{\overline{\mu}_{A}(x), \overline{\mu}_{A}(x)\} \\ & = & rmin\{[\mu_{A}^{L}(x), \mu_{A}^{U}(x)], [\mu_{A}^{L}(x), \mu_{A}^{U}(x)]\} \\ & = & [\mu_{A}^{L}(x), \mu_{A}^{U}(x)] = \overline{\mu}_{A}(x). \end{array}$$

PROPOSITION 3.4. Let A be an i-v fuzzy BG-subalgebra of X, and let $n \in \mathcal{N}$. Then

(i)
$$\overline{\mu}_A(\prod x * x) \ge \overline{\mu}_A(x)$$
, for any odd number n ,

(ii)
$$\overline{\mu}_A(\prod^n x * x) = \overline{\mu}_A(x)$$
, for any even number n .

Proof. Let $x \in X$ and assume that n is odd. Then n = 2k - 1 for some positive integer k. We prove by induction, definition and above lemma imply that $\overline{\mu}_A(x*x) = \overline{\mu}_A(0) \geq \overline{\mu}_A(x)$. Now suppose that

$$\overline{\mu}_A(\prod^{2k-1} x * x) \ge \overline{\mu}_A(x)$$
. Then by assumption

$$\begin{array}{rcl} \overline{\mu}_{A}(\prod^{2(k+1)-1}x*x) & = & \overline{\mu}_{A}(\prod^{2k+1}x*x) \\ & = & \overline{\mu}_{A}(\prod^{2k-1}x*(x*(x*x))) \\ & = & \overline{\mu}_{A}(\prod^{2k-1}x*x) \\ & \geq & \overline{\mu}_{A}(x). \end{array}$$

which proves (i). Similarly we can prove (ii).

THEOREM 3.5. Let A be an i-v fuzzy BG-subalgebra of X. If there exists a sequence $\{x_n\}$ in X, such that

$$\lim_{n \to \infty} \overline{\mu}_A(x_n) = [1, 1]$$

Then $\overline{\mu}_A(0) = [1, 1]$.

Proof. By Lemma 3.3, we have $\overline{\mu}_A(0) \geq \overline{\mu}_A(x)$, for all $x \in X$, thus $\overline{\mu}_A(0) \geq \overline{\mu}_A(x_n)$, for every positive integer n. Consider

$$[1,1] \geq \overline{\mu}_A(0) \geq \lim_{n\to\infty} \overline{\mu}_A(x_n) = [1,1].$$
 Hence $\overline{\mu}_A(0) = [1,1].$

THEOREM 3.6. An i-v fuzzy set $A = [\mu_A^L, \mu_A^U]$ in X is an i-v fuzzy BG-subalgebra of X if and only if μ_A^L and μ_A^U are fuzzy BG-subalgebra of X.

Proof. Let μ_A^L and μ_A^U are fuzzy BG-subalgebra of X and $x,y\in X$, consider

$$\begin{array}{lcl} \overline{\mu}_A(x*y) & = & [\overline{\mu}_A(x*y), \overline{\mu}_A(x*y)] \\ & \geq & [\min\{\mu_A^L(x), \mu_A^L(y)\}, \min\{\mu_A^U(x), \mu_A^U(y)\}] \\ & = & r\min\{[\mu_A^L(x), \mu_A^U(x)], [\mu_A^L(y), \mu_A^U(y)]\} \\ & = & r\min\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}. \end{array}$$

This completes the proof.

Conversely, suppose that A is an i-v fuzzy BG-subalgebras of X. For any $x, y \in X$ we have

$$\begin{split} [\mu_A^L(x*y),\mu_A^U(x*y)] &=& \overline{\mu}_A(x*y) \\ &\geq & rmin\{\overline{\mu}_A(x),\overline{\mu}_A(y)\} \\ &= & rmin\{[\mu_A^L(x),\mu_A^U(x)],[\mu_A^L(y),\mu_A^U(y)]\} \\ &= & [min\{\mu_A^L(x),\mu_A^L(y)\},min\{\mu_A^U(x),\mu_A^U(y)\}]. \end{split}$$

Therefore
$$\mu_A^L(x*y) \ge \min\{\mu_A^L(x), \mu_A^L(y)\}$$
 and
$$\mu_A^U(x*y) \ge \min\{\mu_A^U(x), \mu_A^U(y)\},$$

hence we get that μ_A^L and μ_A^U are fuzzy BG-subalgebras of X.

THEOREM 3.7. Let A_1 and A_2 are i-v fuzzy BG-subalgebras of X. Then $A_1 \cap A_2$ is an i-v fuzzy BG-subalgebras of X.

Proof. Let $x, y \in A_1 \cap A_2$. Then $x, y \in A_1$ and A_2 , since A_1 and A_2 are i-v fuzzy BG-subalgebras of X by above theorem we have:

$$\begin{split} & \overline{\mu}_{A_{1} \cap A_{2}}(x * y) \\ &= \left[\mu_{A_{1} \cap A_{2}}^{L}(x * y), \mu_{A_{1} \cap A_{2}}^{U}(x * y) \right] \\ &= \left[min(\mu_{A_{1}}^{L}(x * y), \mu_{A_{2}}^{L}(x * y)), min(\mu_{A_{1}}^{U}(x * y), \mu_{A_{2}}^{U}(x * y)) \right] \\ &\geq \left[min((\mu_{A_{1} \cap A_{2}}^{L}(x), \mu_{A_{1} \cap A_{2}}^{L}(y)), min((\mu_{A_{1} \cap A_{2}}^{U}(x), \mu_{A_{1} \cap A_{2}}^{U}(y)) \right] \\ &= rmin\{\overline{\mu}_{A_{1} \cap A_{2}}(x), \overline{\mu}_{A_{1} \cap A_{2}}(y)\} \end{split}$$

which Proves theorem.

COROLLARY 3.8. Let $\{A_i \mid i \in \Lambda\}$ be the family of i-v fuzzy BG-subalgebras of X. Then $\bigcap_{i \in \Lambda} A_i$ is also an i-v fuzzy BG-subalgebras of X.

DEFINITION 3.9. Let A be an i-v fuzzy set in X and $[\delta_1, \delta_2] \in D[0, 1]$. Then the i-v level BG-subalgebra $U(A; [\delta_1, \delta_2])$ of A and strong i-v BG-subalgebra $U(A; >, [\delta_1, \delta_2])$ of X are defined as following:

$$U(A; [\delta_1, \delta_2]) := \{ x \in X \mid \overline{\mu}_A(x) \ge [\delta_1, \delta_2] \},$$

$$U(A; >, [\delta_1, \delta_2]) := \{x \in X \mid \overline{\mu}_A(x) > [\delta_1, \delta_2]\}.$$

THEOREM 3.10. Let A be an i-v fuzzy set of X and B be closure of image of μ_A . Then the following condition are equivalent:

- (i) A is an i-v fuzzy BG-subalgebra of X.
- (ii) For all $[\delta_1, \delta_2] \in Im(\mu_A)$, the nonempty level subset $U(A; [\delta_1, \delta_2])$ of A is a BG-subalgebra of X.
- (iii) For all $[\delta_1, \delta_2] \in Im(\mu_A) \setminus B$, the nonempty strong level subset $U(A; >, [\delta_1, \delta_2])$ of A is a BG-subalgebra of X.
- (iv) For all $[\delta_1, \delta_2] \in D[0, 1]$, the nonempty strong level subset $U(A; >, [\delta_1, \delta_2])$ of A is a BG-subalgebra of X.
- (v) For all $[\delta_1, \delta_2] \in D[0, 1]$, the nonempty level subset $U(A; [\delta_1, \delta_2])$ of A is a BG-subalgebra of X.
- *Proof.* (i \longrightarrow iv) Let A be an i-v fuzzy BG-subalgebra of X, $[\delta_1, \delta_2] \in D[0, 1]$ and $x, y \in U(A; <, [\delta_1, \delta_2])$, then we have

 $\overline{\mu}_A(x*y) \geq rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\} > rmin\{[\delta_1, \delta_2], [\delta_1, \delta_2]\} = [\delta_1, \delta_2]$ thus $x*y \in U(A; >, [\delta_1, \delta_2])$. Hence $U(A; >, [\delta_1, \delta_2])$ is a BG-subalgebra of X.

(iv \longrightarrow iii) It is clear.

(iii \longrightarrow ii) Let $[\delta_1, \delta_2] \in Im(\mu_A)$. Then $U(A; [\delta_1, \delta_2])$ is a nonempty. Since $U(A; [\delta_1, \delta_2]) = \bigcap_{[\delta_1, \delta_2] > [\alpha_1, \alpha_2]} U(A; >, [\delta_1, \delta_2])$, where

 $[\alpha_1, \alpha_2] \in Im(\mu_A) \setminus B$. Then by (iii) and Corollary 3.8, $U(A; [\delta_1, \delta_2])$ is a BG-subalgebra of X.

(ii \longrightarrow v) Let $[\delta_1, \delta_2] \in D[0, 1]$ and $U(A; [\delta_1, \delta_2])$ be nonempty. Suppose $x, y \in U(A; [\delta_1, \delta_2])$. Let $[\beta_1, \beta_2] = min\{\mu_A(x), \mu_A(y)\}$, it is clear that $[\beta_1, \beta_2] = min\{\mu_A(x), \mu_A(y)\} \ge \{[\delta_1, \delta_2], [\delta_1, \delta_2]\} = [\delta_1, \delta_2]$. Thus $x, y \in U(A; [\beta_1, \beta_2])$ and $[\beta_1, \beta_2] \in Im(\mu_A)$, by (ii) $U(A; [\beta_1, \beta_2])$ is a BG-subalgebra of X, hence $x * y \in U(A; [\beta_1, \beta_2])$. Then we have

 $\overline{\mu}_A(x*y) \ge rmin\{\mu_A(x), \mu_A(y)\} \ge \{[\beta_1, \beta_2], [\beta_1, \beta_2]\} = [\beta_1, \beta_2] \ge [\delta_1, \delta_2].$ Therefore $x*y \in U(A; [\delta_1, \delta_2])$. Then $U(A; [\delta_1, \delta_2])$ is a BG-subalgebra of X.

(v \longrightarrow i) Assume a nonempty set $U(A; [\delta_1, \delta_2])$ is a BG-subalgebra of X, for every $[\delta_1, \delta_2] \in D[0, 1]$. In contrary, let $x_0, y_0 \in X$ be such that

$$\overline{\mu}_A(x_0*y_0) < rmin\{\overline{\mu}_A(x_0), \overline{\mu}_A(y_0)\}.$$
 Let $\overline{\mu}_A(x_0) = [\gamma_1, \gamma_2], \overline{\mu}_A(y_0) = [\gamma_3, \gamma_4]$ and $\overline{\mu}_A(x_0*y_0) = [\delta_1, \delta_2].$ Then

$$\begin{split} [\delta_1, \delta_2] < rmin\{[\gamma_1, \gamma_2], [\gamma_3, \gamma_4]\} &= [min\{\gamma_1, \gamma_3], min\{\gamma_2, \gamma_4\}]. \end{split}$$
 So $\delta_1 < min\{\gamma_1, \gamma_3\}$ and $\delta_2 < min\{\gamma_2, \gamma_4\}.$

Consider

$$[\lambda_1, \lambda_2] = \frac{1}{2}\overline{\mu}_A(x_0 * y_0) + rmin\{\overline{\mu}_A(x_0), \overline{\mu}_A(y_0)\}$$

We get that

$$[\lambda_{1}, \lambda_{2}] = \frac{1}{2}([\delta_{1}, \delta_{2}] + min\{\gamma_{1}, \gamma_{3}\}, min\{\gamma_{2}, \gamma_{4}\}])$$
$$= [\frac{1}{2}(\delta_{1} + min\{\gamma_{1}, \gamma_{3}\}), \frac{1}{2}(\delta_{2} + min\{\gamma_{2}, \gamma_{4}\})]$$

Therefore

$$min\{\gamma_1, \gamma_3\} > \lambda_1 = \frac{1}{2}(\delta_1 + min\{\gamma_1, \gamma_3\}) > \delta_1$$

$$min\{\gamma_2, \gamma_4\} > \lambda_2 = \frac{1}{2}(\delta_2 + min\{\gamma_2, \gamma_4\}) > \delta_2$$

Hence

$$[\min\{\gamma_1,\gamma_3\},\min\{\gamma_2,\gamma_4\}]>[\lambda_1,\lambda_2]>[\delta_1,\delta_2]=\overline{\mu}_A(x_0*y_0)$$

so that $x_0 * y_0 \notin U(A; [\delta_1, \delta_2])$

which is a contradiction, since

$$\overline{\mu}_A(x_0) = [\gamma_1, \gamma_2] \geq [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2]$$

$$\overline{\mu}_A(y_0) = [\gamma_3, \gamma_4] \ge [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2]$$

imply that $x_0, y_0 \in U(A; [\delta_1, \delta_2])$. Thus we have $\overline{\mu}_A(x * y) \ge rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$ for all $x, y \in X$, which completes the proof.

Theorem 3.11. Each BG-subalgebra of X is i-v level BG-subalgebra of an i-v fuzzy BG-subalgebra of X.

Proof. Let Y be a BG-subalgebra of X, and A be an i-v fuzzy set on X defined by

$$\overline{\mu}_A(x) = \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in Y \\ [0, 0] & \text{otherwise} \end{cases}$$

where $\alpha_1, \alpha_2 \in [0, 1]$ with $\alpha_1 <, \alpha_2$. It is clear that $U(A; [\alpha_1, \alpha_2]) = Y$. Let $x, y \in X$. We consider the following cases:

case 1) If $x, y \in Y$, then $x * y \in Y$ therefore

$$\overline{\mu}_A(x*y) = [\alpha_1,\alpha_2] = rmin\{[\alpha_1,\alpha_2], [\alpha_1,\alpha_2]\} = rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$$
 case 2) If $x,y \not\in Y$, then $\overline{\mu}_A(x) = [0,0] = \overline{\mu}_A(y)$ and so

$$\overline{\mu}_A(x*y) \geq [0,0] = rmin\{[0,0],[0,0]\} = rmin\{\overline{\mu}_A(x),\overline{\mu}_A(y)\}.$$

case 3) If $x \in Y$ and $y \notin Y$, then $\overline{\mu}_A(x) = [\alpha_1, \alpha_2]$ and $\overline{\mu}_A(y) = [0, 0]$. Thus

$$\overline{\mu}_A(x*y) \ge [0,0] = rmin\{[\alpha_1,\alpha_2],[0,0]\} = rmin\{\overline{\mu}_A(x),\overline{\mu}_A(y)\}.$$

case 4) If $y \in Y$ and $x \notin Y$, then by the same argument as in case 3, we can conclude that $\overline{\mu}_A(x * y) \ge rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$

Therefore
$$A$$
 is an i-v fuzzy BG -subalgebra of X .

THEOREM 3.12. Let Y be a subset of X and A be an i-v fuzzy set on X which is given in the proof of Theorem 3.11. If A is an i-v fuzzy BG-subalgebra of X, then Y is a BG-subalgebra of X.

Proof. Let A be an i-v fuzzy BG-subalgebra of X, and $x, y \in Y$. Then $\overline{\mu}_A(x) = [\alpha_1, \alpha_2] = \overline{\mu}_A(y)$, thus

$$\overline{\mu}_A(x*y) \geq rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\} = rmin\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = [\alpha_1, \alpha_2],$$
 which implies that $x*y \in Y$.

Theorem 3.13. If A is an i-v fuzzy BG-subalgebra of X, then the set

$$X_{\overline{\mu}_A} := \{x \in X \mid \overline{\mu}_A(x) = \overline{\mu}_A(0)\}$$

is a BG-subalgebra of X.

Proof. Let $x, y \in X_{\overline{\mu}_A}$. Then $\overline{\mu}_A(x) = \overline{\mu}_A(0) = \overline{\mu}_A(y)$, and so

$$\overline{\mu}_A(x*y) \ge rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\} = rmin\{\overline{\mu}_A(0), \overline{\mu}_A(0)\} = \overline{\mu}_A(0).$$

by Lemma 3.3, we get that $\overline{\mu}_A(x*y) = \overline{\mu}_A(0)$ which means that $x*y \in X_{\overline{\mu}_A}$.

THEOREM 3.14. Let N be an i-v fuzzy sub set of X. Let N be an i-v fuzzy set defined by $\overline{\mu}_A$ as:

$$\overline{\mu}_N(x) = \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in N \\ [\beta_1, \beta_2] & \text{Otherwise} \end{cases}$$

for all $[\alpha_1, \alpha_2], [\beta_1, \beta_2] \in D[0,1]$ with $[\alpha_1, \alpha_2] \geq [\beta_1, \beta_2]$. Then N is an i-v fuzzy BG-subalgebra if and only if N is a BG-subalgebra of X. Moreover, in this case $X_{\overline{\mu}_N} = N$.

Proof. Let N be an i-v fuzzy BG-subalgebra. Let $x, y \in X$ be such that $x, y \in N$. Then

$$\overline{\mu}_N(x*y) \geq rmin\{\overline{\mu}_N(x), \overline{\mu}_N(y)\} = rmin\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = [\alpha_1, \alpha_2]$$
 and so $x*y \in N$.

Conversely, suppose that N is a BG-subalgebra of X, let $x, y \in X$.

(i) If $x, y \in N$ then $x * y \in N$, thus

$$\overline{\mu}_N(x*y) = [\alpha_1, \alpha_2] = rmin\{\overline{\mu}_N(x), \overline{\mu}_N(y)\}$$

(ii) If $x \notin N$ or $y \notin N$, then

$$\overline{\mu}_N(x*y) \geq [\beta_1,\beta_2] = rmin\{\overline{\mu}_N(x),\overline{\mu}_N(y)\}$$

This show that N is an i-v fuzzy BG-subalgebra.

Moreover, we have

$$X_{\overline{\mu}_N}:=\{x\in X\mid \overline{\mu}_N(x)=\overline{\mu}_N(0)\}=\{x\in X\mid \overline{\mu}_N(x)=[\alpha_1,\alpha_2]\}=N.$$

DEFINITION 3.15. [2] Let f be a mapping from the set X into a set Y. Let B be an i-v fuzzy set in Y. Then the inverse image of B, denoted by $f^{-1}[B]$, is the i-v fuzzy set in X with the membership function given by $\overline{\mu}_{f^{-1}[B]}(x) = \overline{\mu}_B(f(x))$, for all $x \in X$.

LEMMA 3.16. [2] Let f be a mapping from the set X into a set Y. Let $m = [m^L, m^U]$ and $n = [n^L, n^U]$ be i-v fuzzy sets in X and Y respectively. Then

$$\begin{array}{l} (i) \ f^{-1}(n) = [f^{-1}(n^L), f^{-1}(n^U)], \\ (ii) \ f(m) = [f(m^L), f(m^U)], \end{array}$$

PROPOSITION 3.17. Let f be a BG-homomorphism from X into Y and G be an i-v fuzzy BG-subalgebra of Y with the membership function μ_G . Then the inverse image $f^{-1}[G]$ of G is an i-v fuzzy BG-subalgebra of X.

Proof. Since $B = [\mu_B^L, \mu_B^U]$ is an i-v fuzzy BG-subalgebra of Y, by Theorem 3.6, we get that μ_B^L and μ_B^U are fuzzy BG-subalgebra of Y. By Proposition 2.5, $f^{-1}[\mu_B^L]$ and $f^{-1}[\mu_B^U]$ are fuzzy BG-subalgebra of X, by above lemma and Theorem 3.6, we can conclude that $f^{-1}(B) = [f^{-1}(\mu_B^L), f^{-1}(\mu_B^U)]$ is an i-v fuzzy BG-subalgebra of X.

DEFINITION 3.18. [2] Let f be a mapping from the set X into a set Y, and A be an i-v fuzzy set in X with membership function μ_A . Then the image of A, denoted by f[A], is the i-v fuzzy set in Y with membership function defined by:

$$\overline{\mu}_{f[A]}(y) = \begin{cases} rsup_{z \in f^{-1}(y)} \overline{\mu}_A(z) & \text{if } f^{-1}(y) \neq \emptyset, \forall y \in Y, \\ [0,0] & \text{otherwise} \end{cases}$$

Where
$$f^{-1}(y) = \{x \mid f(x) = y\}.$$

THEOREM 3.19. Let f be a BG-homomorphism from X onto Y. If A is an i-v fuzzy BG-subalgebra of X, then the image f[A] of A is an i-v fuzzy BG-subalgebra of Y.

Proof. Assume that A is an i-v fuzzy BG-subalgebra of X, then $A = [\mu_A^L, \mu_A^U]$ is an i-v fuzzy BG-subalgebra of X if and only if μ_B^L and μ_B^U are fuzzy BG-subalgebra of X. By Proposition 2.6, $f[\mu_A^L]$ and $f[\mu_A^U]$ are fuzzy BG-subalgebra of Y, by Lemma 3.16, and Theorem 3.6, we can conclude that $f[A] = [f[\mu_A^L], f[\mu_A^U]]$ is an i-v fuzzy BG-subalgebra of Y.

Acknowledgement. The author would like to express their sincere thanks to the referees for their valuable suggestions and comments.

References

- [1] S. S. Ahn and H. D. Lee, Fuzzy Subalgebras of BG-algebras, Commun. Korean Math. Soc. 19 (2004) 243-251.
- [2] R. Biswas, Rosenfeld's fuzzy subgroups with interval valued membership function, Fuzzy Sets and Systems 63 (1994), No. 1 87-90.
- [3] A. Borumand Saeid, Fuzzy topological BG-algebras, Int. Math. J. 6 (2005), no. 2, 121–127.
- [4] S. M. Hong, Y. B. Jun, S. J. Kim and G. I. Kim, Fuzzy BCI-subalgebras with interval-valued membership functions, IJMMS. 25:2 (2001), 135-143.
- [5] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42 (1966), 19-22.
- [6] C. B. Kim, H. S. Kim, On BG-algebras, (submitted).
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moonsa, Seoul, Korea, (1994).
- [8] J. Neggers and H. S. Kim, On B-algebras, Math. Vensik 54 (2002), 21-29.
- [9] _____, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [10] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [11] L. A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338-353.
- [12] _____, The concept of a linguistic variable and its application to approximate reasoning. I, Information Sci. 8 (1975), 199-249.

Department of Mathematics Islamic Azad University, Kerman branch Kerman, Iran

E-mail: arsham@iauk.ac.ir