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RELATIONS OF SHORT EXACT SEQUENCES
CONCERNING AMALGAMATED FREE PRODUCTS

Wo0 TAEG SHIN

ABSTRACT. In this paper, we investigate the mutual relation among
short exact sequences of amalgamated free products which involve
augmentation ideals and relation modules. In particular, we find out
commutative diagrams having a steady structure in the sense that
all of their three columns and rows are short exact sequences.

1. Introduction

Let o1 and gy be group presentations for H and K, respectively and
© presentation for G = H %y K, i.e., the amalgamated free product of
H and K with a subgroup U. It is known that short exact sequences
of amalgamated free products are closely related. We can find out the
relation among them by applying diagrams of groups(modules).

In this paper, we investigate the mutual relation among short exact
sequences of amalgamated free products which involve augmentation
ideals and relation modules. In particular, through the following main
theorem, we find out commutative diagrams having a steady structure
in the sense that all of their three columns and rows are short exact
sequences. As a consequence of the main theorem, we have the corollary,
which shows the evident relation, that is to say, necessary and sufficient
conditions between (1-1) and (1-2).
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THEOREM 1.1. For G = H %y K, we have the following commutative
diagrams :

0 0 0
! | |

0 — ZGeuyIU % (ZGoyIH)® (ZGoyxIK) 2 16 — 0
1 1 e

0 — ZGeyZU % (ZGoyZH)® (ZG®xZK) 2 726G — 0
e e le

0 - ZGeuZ % (ZGouZ)®(2ZGexZ) 2 7 — 0
! ! !
0 0 0

where IU, IH, IK, and IG are the augmentation ideals of ZU, ZH,
ZK , and ZG respectively.

COROLLARY 1.2. (1-1) is short exact if and only if (1-2) is short exact.

(1-1) 0 — ZG &y IU 25 (ZG @y TH) & (ZG ok 1K) 25 IG — 0.

1-2)0 —ZG ey Z 2% (ZG @y Z) & (ZG ®x Z) 22 7 — 0.

2. Preliminaries

In this section we have some basic facts on short exact sequences,
which will be useful for our purpose. Suppose that we have a sequence
{G,.} of groups(modules) and a sequence of group(module) homomor-
phisms f; from G; into G;;. We will express these homomorphisms by
arrows between the groups(modules):

fnfl fn
(2—1) “‘%Gn—léGn%Gn—‘rl%.“
The set of suffixes may be finite or infinite. The above sequence (2-1) is

said to be exact if we have im f,_1 = ker f, for each n. If G, = 0 for
1<n-—2and G, =0 for 1 > n+ 2, then

(2—2) 0—G,.1 — G, — G,y1 — 0.

The sequence (2-2) is called a short exact sequence.
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Let A,B,C, and D be groups(modules) and let «,3,y, and § be
group(module) homomorphisms. We say that the diagram

A % B
1 18
c D

is commutative if fa = v : A — D. This notion can be generalized
to more complicated diagrams in an obvious way.

LEMMA 2.1. Consider the following commutative diagram, where
three columns are exact.

0 0 0
] ] ]

0 — Al e A2 — A3 — 0
! ! !

0 — By — By — By — 0
! ! !

0O — ¢ — C — (O3 — 0
! ! !
0 0 0

Suppose that the middle row is exact. Then the first row is exact if and
only if the third row is exact.

Let H,K, and U be groups and ¢; and ¢ homomorphisms:

U N H
(2—3) ¢2l
K

A solution of the above diagram (2-3) is a group G and homomorphisms
Yy and 1) such that the following diagram commutes (i.e., 1101 = 209

):

U s om
(2 —4) 62 o
K 2 ¢

A push-out of the diagram (2-3) is a solution (G, 11, 15) such that, for
any other solution (L, 0y, 0,), there exists a unique homomorphism « :
G — L such that §; = at); (i = 1, 2). As usual, the push-out is unique
up to isomorphism.
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Let p = ( x: r ) be a group presentation, where x is a set and r is a
set of cyclically reduced words on x Ux~1. Let N be the normal closure
of r in F', where F' is the free group on x. Then the quotient G of F' by
N is called the group defined by ¢ .

THEOREM 2.2. A push-out exists for the diagram (2-3). Moreover, if
H and K are defined by p; = (X1 : r1 ) and pg = ( Xy : Iy ) respectively,
then the push-out G is defined by o = { x;Uxy : r1 Uty U{ ¢ (u) o (u) ™ :
ueU}).

A proof of this theorem can be found in [12] (Theorem 11.58). When
both ¢; and ¢, are monomorphisms, the push-out G is called the amal-
gamated free product of H and K with a subgroup U. In this case we
usually regard U as a subgroup of H and K, and regard ¢; and ¢, as
inclusions. The usual notation for the amalgamated free product of H
and K with a subgroup U is H xy K. Sometimes it is more convenient to
use the notation H xy~y K where U C H,V C K, and U = V. For more
precision, we could mention the specific isomorphism from U to V. For
an amalgamated free product we see that 1, and 15 are monomorphisms,
and we regard them as inclusions.

3. Main results

Let G be a group written multiplicatively. The integral group ring
7.G of (G is defined as follows. Its underlying abelian group is the free
abelian group on the set of elements of G as basis ; the product of two
basis elements is given by the product in G. Thus the elements of the
group ring ZG are sums » . m(x)x where m is a function from G to
7, which takes the value zero except on a finite number of elements of
G. The multiplication is given by (3_,cq m(2)x) - (X, e M (Y)y) =
> wyec (m(x)-m'(y))zy. The group ring is characterized by the following
universal property. Let ¢ : G — ZG be the obvious embedding.

ProprosiTION 3.1. Let R be a ring. To each function f : G — R
such that f(zy) = f(x) - f(y) and f(1) = 1g, there exists a unique ring
homomorphism f': ZG — R such that f'i = f.

A (left) G-module is an abelian group A together with a group ho-
momorphism ¢ : G — AutA. In other words, each element of G acts
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as an automorphism of A. Since AutA C EndA, the universal prop-
erty of the group ring yields a ring homomorphism ¢’ : ZG — EndA,
making A into a (left) module over ZG. Conversely, if A is a (left) mod-
ule over ZG then A is a (left) G-module, since any ring homomorphism
takes invertible elements into invertible elements, and since the group
elements in ZG are invertible. Thus we need not retain any distinction
between the concepts of G-module and ZG-module. A (left) G-module
is called trivial if the structure map o : G — AutA is trivial, i.e., if
every element of G acts as the identity in A. Every abelian group may
be regarded as a trivial left or right G-module for each group G. We
regard Z as a left ZG-module with the trivial G-action. The augmenta-
tion map ¢ : Z.G — 7 is the homomorphism sending every z € G into
1€ Z,thatis ) .. m(x)r — > .~ m(x). The kernel of ¢ is denoted
by IG and is called the augmentation ideal of ZG. Thus we have a short
exact sequence

(3-1) 0— IG - 7ZG =7 — 0.

Tensoring (3-1) with /G overZ, we obtain the short exact sequence

(3—2) 0— IG®zIG 572G ®,IG - IG — 0
where v and ¢ are defined by

yiz—-1D@@-1)r— (z-1)®@@-1) (z€qG)
d:x@@y—1)r—ay—1) (z,y € G).

Let G = H %y K be the amalgamated free product of H and K with
subgroup U. Then we have:

PROPOSITION 3.2. There is a short exact sequence
(3-3) 0 — ZGRyIU 5% (ZGoy TH)®(ZG ok IK) 25 IG — 0

where o and 3 are defined by

a 2@ u—1)r— o wu—-1),-20(u—-1) (r€G, uel)
Bii@®(h—1),y8 (k—1) — a(h—1) +y(k—1) (x,y € G,h €
H ke K).

ProPOSITION 3.3. There is a short exact sequence

(3—4) 0 — ZGRUYZU =% (ZGouZH)®(ZGoxZK) 2 76 — 0
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where oy and 3y are defined by

a:rQuir— (rQ@u,—r®u) (r €G, uel)
fBo:(x@h,y®k)— zh+yk (z,y € G, he H, k € K).

PROPOSITION 3.4. There is a short exact sequence
(3-5 0-—ZGRuZ "% (ZGorZ) @ (ZG @K L) 27 — 0
where a3 and 33 are defined by

az:r®ar— (r®a,—x®a) (r €G, a€Z)
fs:(x®a,y®@b)—a+b(x,y € G, a,beZ).

We now observe the relation among (3-3),(3-4), and (3-5) through the
following theorem. Then we can find out commutative diagrams having
a steady structure.

THEOREM 3.5. The following diagram is commutative :

0 0 0
! | |

0 — ZGeuyIU % (ZGoyIH)® (ZG®xIK) 2 16 — 0
v v It

0 — ZGeuZU % (ZGoyZH)® (ZGoxZK) 2 726G — 0
I e le

0 > ZGewZ 2 (ZGonZ)®(2ZGoxZ) 2 7 — 0
! ! !
0 0 0

where

Viz@u—1)— 2@ (u—-1)(ze G, uel)

firr@ur—zrzel (reG, uel)

iz h—-1),y®(k—-1)— (2@ (h—1),yx(k—1)) (z,y € G, h €
H, ke K)

i (x@hy®k)— (2@ 1,y®1) (zr,y € G, he H, k€ K)

Proof. (1) We consider the commutativity of the left upper hand
square. Then
Caj(z@(u—1)) = (z®@(u—1), -z (u—1)) = (z®@(u—1), —z@(u—1))
't (u—1) =z (u—-1)=(2 u—-1),—2x® (u—1)).
Thus we have t*a; = ant/. Hence the left upper hand square is commu-
tative.
(2) We consider the commutativity of the right upper hand square. Then
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iz @(h—=1),y®(k—1)) = ((x(h—=1)+y(k—1)) = z(h—1)+y(k—-1)
Bor*(x@(h=1), y@(k—1)) = Bo(2®(h—1),y@(k=1)) = z(h—1)+y(k-1).
Thus we have 131 = (Bo¢*. Hence the right upper hand square is commu-
tative.

(3) We consider the commutativity of the left lower hand square. Then

gz @u) ="z Q@u,—rQu)=(r®1,—r®1)
aze'(z@u) =a3(z®@1)=(z®@1,—x®1).
Thus we have e*ay = aze’. Hence the left lower hand square is commu-

tative.
(4) We consider the commutativity of the right lower hand square. Then

ef(x@h,y®k)=clah+yk)=1+1
Be®(x @ h,y@k) =[Gz ly®l)=1+1

Thus we have €3y = f3¢*. Hence the right lower hand square is commu-
tative. Therefore we get the result by (1),(2),(3), and (4). O

As a consequence of the above theorem, we have the following corol-
lary, which shows the evident relation between (3-3) and (3-5).

COROLLARY 3.6. (3-3) is exact if and only if (3-5) is exact.

Proof. The third column is given in (3-1). The first and second
columns are given from (3-1) and by tensoring ZG ®y — and (ZG ®g
—) @ (ZG ®k —) respectively. Then by Lemma 2.1 and Proposition 3.3
we get the result. O]

Let G be the group defined by a given presentation p = ( x: r ) and
let N be the normal closure of r in F', where F' is the free group on x.
Then we have a short exact sequence of groups

(3—6) 1—N—F -G —1.

The abelianization N/N’ of N can be regarded as a left ZG-module
via G-action induced by conjugation in F' (if U € N and W € F then
(WN)(UN') = WUW~IN"). The G-module N/N' is called the relation
module determined by the short exact sequence (3-6).

Next we consider the short exact sequences involving relation modules
and augmentation ideals.

LEMMA 3.7. Let

l1—N-—F-5G—1
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be a short exact sequence of groups. Then

(3 - 10) 0 — N/N' 5 2G @p IF -2 IG — 0

is an exact sequence of G-modules where k(UN') = 1¢ ® (U — 1) and
v(lg@ (W —=1))=x(W)—-1 (Ue N, WeF).

A proof of this lemma can be found in [9](Chapter VI, Theorem 6.3).

THEOREM 3.8. The two short exact sequences (3-2) and (3-10) are
isomorphic.

Proof. Consider the following diagram

0 — N/N 5 ZGeplF -5 IG — 0
Lo 15 It

0 — IG,IG - ZG®,IG - IG — 0

where «, 3,7, and J are defined by

a:UN'+—1¢® (UN —1) (U € N),

B:ilg@(W —-1)r—1g@ (WN —1) (W € F),

v (WN-1)® (WN - 1) — (WN - 1)@ (WN —1) (WN € G),
0:16®@ (WN—-1)— WN -1 (WN € Q).

(1) We consider the commutativity of the left hand square. Then

Br(UN')=pB(lc®@ (U—-1))=1c® (UN —1)
ya(UN') =~v(1¢ ® (UN — 1)) =1 ® (UN —1).

Thus we have Sk = ya. Hence the left hand square is commutative.
(2) We consider the commutativity of the right hand square. Then

w(lg® (W —1)) =(WN—1)=WN —1
58(lg @ (W —=1)) =6(lg ® (WN —1)) = WN —1.

Thus we have (v = 6. Hence the right hand square is commutative.
Now we want to show that « is an isomorphism. We show that kera = 0.
Let UN' € kera. Then 0 = ya(UN') = Br(UN’). It is routine to show
that (§ is an isomorphism. Since [ is an isomorphism, x(UN') = 0.
Since k is injective, it follows that UN’ = 0. Secondly, we shall show
that « is surjective. Let (UN — 1) ® (UN — 1) € IG ®z IG. Then
Y(UN —1)® (UN — 1)) € ZG ®z IG. Since ( is an isomorphism,
there exists 1¢ ® (U — 1) € ZG ®p IF such that f(lg @ (U — 1)) =
Y(UN = 1) ® (UN — 1)). Then w(lg ® (U — 1)) = (1l ® (U —
1)) = 0y((UN — 1) ® (UN — 1)) = 0. Hence v(1g ® (U — 1)) € kert.
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Since ¢ is an isomorphism, it follows that v(1¢ ® (U — 1)) = 0. Then
lg ® (U —1) € kerv = imk. Hence there exists UN' € N/N' such that
K(UN') =1¢ ® (U — 1). This implies that

Y(@(UN') = (UN —1)® (UN — 1))

T(UN') =4((UN =1) @ (UN - 1))
g RUN') =~((UN =1) @ (UN —1))
0.

(le® U —1)) =~1((UN -1) ® (UN - 1))

Then a(UN') — (UN — 1) ® (UN — 1)) € ker+y. Since v is injective,
it follows that «(UN’) — (UN — 1) ® (UN — 1)) = 0, i.e., a(UN') =
(UN—-1)®(UN —1). Therefore « is surjective. Consequently, we obtain
the result. [
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