Kangweon-Kyungki Math. Jour. 14 (2006), No. 2, pp. 241-248

G-FUZZY CONGRUENCES GENERATED BY COMPATIBLE FUZZY RELATIONS

INHEUNG CHON

ABSTRACT. We define a G-fuzzy congruence, which is a generalized fuzzy congruence, and characterize the G-fuzzy congruence generated by a left and right compatible fuzzy relation on a semigroup.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh [9]. Subsequently, Goguen [2] and Sanchez [7] studied fuzzy relations in various contexts. In [5] Nemitz discussed fuzzy equivalence relations, fuzzy functions as fuzzy relations, and fuzzy partitions. Murali [4] developed some properties of fuzzy equivalence relations and certain lattice theoretic properties of fuzzy equivalence relations. Samhan [6] discussed the fuzzy congruence generated by a fuzzy relation on a semigroup and studied the lattice of fuzzy congruences on a semigroup. Gupta et al. [3] proposed a generalized definition of a fuzzy equivalence relation on a set, which we call G-fuzzy equivalence relation in this paper, and developed some properties of that relation. In [8] Tan developed some properties of fuzzy congruences on a regular semigroup. Chon [1] characterized the G-fuzzy congruence generated by a fuzzy relation on a semigroup and gave some lattice theoretic properties of G-fuzzy congruences on semigroups. The present work has been started as a continuation of these studies.

In section 2 we define a G-fuzzy congruence and review some basic definitions and properties of fuzzy relations and G-fuzzy congruences. In section 3 we find the G-fuzzy congruence generated by a

Received November 13, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 03E72.

Key words and phrases: G-fuzzy equivalence relation, G-fuzzy congruence.

This work was supported by a research grant from Seoul Women's University (2005)

Inheung Chon

left and right compatible fuzzy relation μ on a semigroup S such that $\sup_{x \neq y \in S} \mu(x, y) > 0$ for some $x \neq y \in S$, find the G-fuzzy congruence generated by a left and right compatible fuzzy relation μ on a semigroup S such that $\mu(x, y) = 0$ for all $x \neq y \in S$ and $\mu(z, z) > 0$ for all $z \in S$, and show that there does not exist the G-fuzzy congruence generated by a left and right compatible fuzzy relation μ on a semigroup S such that $\mu(x, y) = 0$ for all $x \neq y \in S$ and $\mu(z, z) = 0$ for some $z \in S$.

2. Preliminaries

We recall some basic definitions and properties of fuzzy relations and G-fuzzy congruences which will be used in the next section.

DEFINITION 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy set* in X. For every $x \in B$, B(x) is called a *membership grade* of x in B.

The standard definition of a fuzzy reflexive relation μ in a set X demands $\mu(x, x) = 1$. Gupta et al. ([3]) weakened this definition as follows.

DEFINITION 2.2. A fuzzy relation μ in a set X is a fuzzy subset of $X \times X$. μ is *G*-reflexive in X if $\mu(x, x) > 0$ and $\mu(x, y) \leq \inf_{t \in X} \mu(t, t)$ for all $x, y \in X$ such that $x \neq y$. μ is symmetric in X if $\mu(x, y) = \mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$(\lambda \circ \mu)(x,y) = \sup_{z \in X} \min(\lambda(x,z),\mu(z,y)).$$

A fuzzy relation μ in X is transitive in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called *G*-fuzzy equivalence relation if μ is G-reflexive, symmetric, and transitive.

DEFINITION 2.3. Let μ be a fuzzy relation in a set X. μ is called fuzzy left (right) compatible if $\mu(x, y) \leq \mu(zx, zy)$ ($\mu(x, y) \leq \mu(xz, yz)$) for all $x, y, z \in X$. A G-fuzzy equivalence relation on X is called a G-fuzzy left congruence (right congruence) if it is fuzzy left compatible

242

(right compatible). A G-fuzzy equivalence relation on X is a *G*-fuzzy congruence if it is a G-fuzzy left and right congruence.

DEFINITION 2.4. Let μ be a fuzzy relation in a set X. μ^{-1} is defined as a fuzzy relation in X by $\mu^{-1}(x, y) = \mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν .

PROPOSITION 2.5. Let μ be a fuzzy relation on a set X. Then $\bigcup_{n=1}^{\infty} \mu^n$ is the smallest transitive fuzzy relation on X containing μ , where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [6]. \Box

PROPOSITION 2.6. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [6].

PROPOSITION 2.7. If μ is a fuzzy relation on a semigroup S that is fuzzy left and right compatible, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 3.6 of [6].

3. G-fuzzy congruences generated by fuzzy relations

In this section we characterize the G-fuzzy congruence generated by a left and right compatible fuzzy relation on a semigroup.

PROPOSITION 3.1. Let μ be a fuzzy relation on a set S. If μ is G-reflexive, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly $\mu^1 = \mu$ is G-reflexive. Suppose μ^k is G-reflexive.

$$\mu^{k+1}(x,x) = (\mu^k \circ \mu)(x,x) = \sup_{z \in S} \min[\mu^k(x,z), \mu(z,x)]$$

$$\geq \min[\mu^k(x,x), \mu(x,x)] > 0$$

for all
$$x \in S$$
. Let $x, y \in S$ with $x \neq y$. Then

$$\inf_{t \in S} \mu^{k+1}(t, t) = \inf_{t \in S} (\mu^k \circ \mu)(t, t)$$

$$= \inf_{t \in S} \sup_{z \in S} \min[\mu^k(t, z), \mu(z, t)]$$

$$\geq \inf_{t \in S} \min[\mu^k(t, t), \mu(t, t)]$$

$$\geq \min[\inf_{t \in S} \mu^k(t, t), \inf_{t \in S} \mu(t, t)] \geq \min[\mu^k(x, z), \mu(z, y)]$$

for all $z \in S$ such that $z \neq x$ and $z \neq y$. That is,

$$\inf_{t \in S} \mu^{k+1}(t,t) \ge \sup_{z \in S - \{x,y\}} \min[\mu^k(x,z), \mu(z,y)].$$

Clearly

 $\inf_{t \in S} \mu(t, t) \ge \min \left[\mu^k(x, x), \mu(x, y) \right]$

and

$$\inf_{t \in S} \mu^k(t, t) \ge \min \left[\mu^k(x, y), \mu(y, y) \right].$$

Since
$$\mu^{k+1}(t,t) \ge \mu^k(t,t) \ge \mu(t,t)$$
 for $k \ge 1$,
 $\inf_{t \in S} \mu^{k+1}(t,t) \ge \min [\mu^k(x,x), \mu(x,y)]$

and

$$\inf_{t \in S} \mu^{k+1}(t,t) \ge \min \ [\mu^k(x,y), \mu(y,y)].$$

Thus

$$\begin{split} \inf_{t \in S} \mu^{k+1}(t,t) &\geq \max \left[\sup_{z \in S - \{x,y\}} \min(\mu^k(x,z), \mu(z,y)), \\ \min(\mu^k(x,x), \mu(x,y)), \min(\mu^k(x,y), \mu(y,y)) \right] \\ &= \sup_{z \in S} \min[\mu^k(x,z), \mu(z,y)] \\ &= (\mu^k \circ \mu)(x,y) = \mu^{k+1}(x,y). \end{split}$$

That is, μ^{k+1} is G-reflexive. By the mathematical induction, μ^n is G-reflexive for $n = 1, 2, \ldots$. Thus $\inf_{t \in S} [\bigcup_{n=1}^{\infty} \mu^n](t, t) = \inf_{t \in S} \sup[\mu(t, t), (\mu \circ \mu)(t, t), \ldots] \ge \sup[\inf_{t \in S} \mu(t, t), \inf_{t \in S} (\mu \circ \mu)(t, t), \ldots] \ge \sup[\mu(x, y), (\mu \circ \mu)(x, y), \ldots] = [\bigcup_{n=1}^{\infty} \mu^n](x, y)$. Clearly $[\bigcup_{n=1}^{\infty} \mu^n](x, x) > 0$. Hence $\bigcup_{n=1}^{\infty} \mu^n$ is G-reflexive.

244

THEOREM 3.2. Let μ be a fuzzy relation on a semigroup S such that μ is fuzzy left and right compatible.

- (1) If $\mu(x, y) > 0$ for some $x \neq y \in S$, then the G-fuzzy congruence generated by μ is $\bigcup_{n=1}^{\infty} [\mu \cup \mu^{-1} \cup \theta]^n$, where θ is a fuzzy relation on S such that $\theta(z, z) = \sup_{\substack{x \neq y \in S \\ x \neq y \in S}} \mu(x, y)$ for all $z \in S$ and $\theta(x, y) = \theta(y, x) \leq \min [\mu(x, y), \mu(y, x)]$ for all $x, y \in S$ with $x \neq y$.
- (2) If $\mu(x,y) = 0$ for all $x \neq y \in S$ and $\mu(z,z) > 0$ for all $z \in S$, then the G-fuzzy congruence generated by μ is $\bigcup_{n=1}^{\infty} \mu^n$.
- (3) If µ(x, y) = 0 for all x ≠ y ∈ S and µ(z, z) = 0 for some z ∈ S, then there does not exist the G-fuzzy congruence generated by µ.

Proof. (1) Let $\mu_1 = \mu \cup \mu^{-1} \cup \theta$. Since $\theta(z, z) > 0$, $\mu_1(z, z) > 0$ for all $z \in S$. Let $x, y \in S$ with $x \neq y$. Then $\theta(x, y) \leq \mu(x, y) \leq \sup_{x \neq y \in S} \mu(x, y) = \theta(t, t)$ for all $t \in S$. Thus

$$\inf_{t \in S} \mu_1(t,t) \ge \inf_{t \in S} \theta(t,t)$$
$$\ge \max[\mu(x,y), \ \mu^{-1}(x,y), \ \theta(x,y)] = \mu_1(x,y).$$

That is, μ_1 is G-reflexive. By Proposition 3.1, $\bigcup_{n=1}^{\infty} \mu_1^n$ is G-reflexive. Since $\theta(x, y) = \theta(y, x), \ \theta = \theta^{-1}$. Thus

$$\mu_1(x, y) = \max \left[\mu(x, y), \mu^{-1}(x, y), \theta(x, y) \right]$$

= max $\left[\mu^{-1}(y, x), \mu(y, x), \theta^{-1}(x, y) \right]$
= max $\left[\mu^{-1}(y, x), \mu(y, x), \theta(y, x) \right]$
= $\mu_1(y, x).$

That is, μ_1 is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_1^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_1^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_1^n$ is a G-fuzzy equivalence relation containing μ . Since $\theta(x, y) \leq \mu(x, y) \leq \mu(zx, zy)$,

$$\mu_{1}(x,y) = \max \left[\mu(x,y), \mu^{-1}(x,y), \theta(x,y)\right] \\ = \max \left[\mu(x,y), \mu(y,x), \theta(x,y)\right] = \max \left[\mu(x,y), \mu(y,x)\right] \\ \leq \max \left[\mu(zx,zy), \mu(zy,zx)\right] \\ \leq \max \left[\mu(zx,zy), \mu(zy,zx), \theta(zx,zy)\right] \\ = \max \left[\mu(zx,zy), \mu^{-1}(zx,zy), \theta(zx,zy)\right] = \mu_{1}(zx,zy)$$

Inheung Chon

for all $x, y, z \in S$ such that $x \neq y$. Since $\theta(x, x) = \theta(zx, zx)$ for all $x, z \in S$, $\mu_1(x, x) = \max [\mu(x, x), \mu^{-1}(x, x), \theta(x, x)] \leq \max [\mu(zx, zx), \theta(zx, zx)] = \max [\mu(zx, zx), \mu^{-1}(zx, zx), \theta(zx, zx)] = \mu_1(zx, zx)$ for all $x, z \in S$. Thus μ_1 is fuzzy left compatible. Similarly we may show μ_1 is fuzzy right compatible. By Proposition 2.7, $\bigcup_{n=1}^{\infty} \mu_1^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} \mu_1^n$ is a G-fuzzy congruence containing μ . Let ν be a G-fuzzy congruence containing μ . Then $\mu(x, y) \leq \nu(x, y), \ \mu^{-1}(x, y) = \mu(y, x) \leq \nu(y, x) = \nu(x, y)$, and $\theta(x, y) \leq \mu(x, y) \leq \nu(x, y)$. Thus $\mu_1(x, y) \leq \nu(x, y)$ for all $x, y \in S$ such that $x \neq y$. Since $\nu(a, a) \geq \nu(x, y) \geq \mu(x, y)$ for all $a, x, y \in S$ such that $x \neq y$, $\theta(a, a) = \sup_{x \neq y \in S} \mu(x, y) \leq \nu(a, a)$ for all $a \in x, y \in S$. Since $\nu(a, a) \geq \mu(a, a) = \mu^{-1}(a, a)$ and $\nu(a, a) \geq \theta(a, a)$ for all

S. Since $\nu(a, a) \geq \mu(a, a) = \mu^{-1}(a, a)$ and $\nu(a, a) \geq \theta(a, a)$ for an $a \in S$, max $[\mu(a, a), \mu^{-1}(a, a), \theta(a, a)] \leq \nu(a, a)$ for all $a \in S$. Thus $\mu_1 \subseteq \nu$. Suppose $\mu_1^k \subseteq \nu$. Then $\mu_1^{k+1}(b, c) = (\mu_1^k \circ \mu_1)(b, c) = \sup_{d \in S} \min[\mu_1^k(b, d), \mu_1(d, c)] \leq \sup_{d \in S} \min[\nu(b, d), \nu(d, c)] = (\nu \circ \nu)(b, c)$ for all $b, c \in S$. That is, $\mu_1^{k+1} \subseteq (\nu \circ \nu)$. Since ν is transitive, $\mu_1^{k+1} \subseteq \nu$. By

the mathematical induction, $\mu_1^n \subseteq \nu$ for every natural number n. Thus $\bigcup_{n=1}^{\infty} [\mu \cup \mu^{-1} \cup \theta]^n = \bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1 \circ \mu_1) \cdots \subseteq \nu.$

(2) Let $x, y \in S$ with $x \neq y$. Since $\mu(x, y) = 0$, $\inf_{t \in S} \mu(t, t) \ge \mu(x, y)$.

Thus μ is G-reflexive. Since $\mu(x, y) = 0$, μ is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\bigcup_{n=1}^{\infty} \mu^n$ is a G-fuzzy equivalence relation containing μ . Since μ is fuzzy left and right compatible from the hypothesis, $\bigcup_{n=1}^{\infty} \mu^n$ is a G-fuzzy congruence containing μ by Proposition 2.7. Let ν be a G-fuzzy congruence containing μ . By the mathematical induction as shown in Theorem 3.2 (1), we may show that $\mu^n \subseteq \nu$ for every natural number n. Hence $\bigcup_{n=1}^{\infty} \mu^n = \mu \cup (\mu \circ \mu) \cup (\mu \circ \mu \circ \mu) \cdots \subseteq \nu$.

(3) Suppose ξ is the G-fuzzy congruence generated by μ . Then $\xi(z,z) > 0$ for every $z \in S$. Let θ be a fuzzy relation such that $\theta(a,b) = \frac{\xi(a,b)}{2}$ for all $a,b \in S$. Then $\theta(z,z) > 0$ for all $z \in S$. Let $x, y \in S$ with $x \neq y$. Since ξ is G-reflexive, $\inf_{t \in S} \xi(t,t) \ge \xi(x,y)$. Since $\theta(a,b) = \frac{\xi(a,b)}{2}$ for all $a,b \in S$, $\inf_{t \in S} \theta(t,t) \ge \theta(x,y)$. Since $\mu(x,y) = 0$, $\inf_{t \in S} (\mu \cup \theta)(t,t) \ge \inf_{t \in S} \theta(t,t) \ge (\mu \cup \theta)(x,y)$. That is, $\mu \cup \theta$ is G-reflexive. Since ξ is symmetric, θ is symmetric. Since θ is symmetric

246

247

and $\mu(x, y) = 0$, $\mu \cup \theta = (\mu \cup \theta)^{-1}$. That is, $\mu \cup \theta$ is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\bigcup_{n=1}^{\infty} (\mu \cup \theta)^n$ is a G-fuzzy equivalence relation containing μ . Since $\theta(a, b) = \frac{\xi(a, b)}{2}$ for all $a, b \in S$ and ξ is fuzzy left and right compatible, θ is fuzzy left and right compatible. Since μ is fuzzy left and right compatible, $\mu \cup \theta$ is fuzzy left and right compatible. By Proposition 2.7, $\bigcup_{n=1}^{\infty} (\mu \cup \theta)^n$ is a G-fuzzy congruence containing μ . Since $\theta(a, b) = \frac{\xi(a, b)}{2} \leq \xi(a, b)$ and $\mu(a, b) \leq \xi(a, b)$ for all $a, b \in S$, $\mu \cup \theta \subseteq \xi$. Let $\mu_1 = \mu \cup \theta$. Then $\mu_1 \subseteq \xi$. By the mathematical induction as shown in Theorem 3.2 (1), we may show that $\mu_1^n \subseteq \xi$ for every natural number n. Hence $\bigcup_{n=1}^{\infty} [\mu \cup \theta]^n = \bigcup_{n=1}^{\infty} \mu_1^n \subseteq \xi$. Let $v \neq w \in S$. Then $\mu_1(v, w) =$ $(\mu \cup \theta)(v, w) = \theta(v, w) \leq \inf_{t \in S} \theta(t, t) \leq \mu_1(z, z)$ for every $z \in S$. Suppose $\mu_1^k(v, w) \leq \mu_1(z, z)$ for every $z \in S$. Then

$$\mu_1^{k+1}(v,w) = \sup_{s \in S} \min \left[\mu_1^k(v,s), \ \mu_1(s,w) \right]$$

= max [$\sup_{s \in S - \{v,w\}} \min(\mu_1^k(v,s), \ \mu_1(s,w)),$
min ($\mu_1^k(v,v), \mu_1(v,w)$), min ($\mu_1^k(v,w), \mu_1(w,w)$)]
 $\leq \max \left[\mu_1(z,z), \ \mu_1(z,z), \ \mu_1^k(v,w) \right] = \mu_1(z,z).$

By the mathematical induction, $\mu_1^n(v, w) \leq \mu_1(z, z)$ for every natural number n. Clearly $\mu_1^k(z, z) = \mu_1(z, z)$ for k = 1. Suppose $\mu_1^k(z, z) = \mu_1(z, z)$. Since $\mu_1^k(z, s) \leq \mu_1(z, z)$ for $s \neq z \in S$, $\mu_1^{k+1}(z, z) = \sup \min [\mu_1^k(z, s), \mu_1(s, z)] = \max [\sup_{s \in S - \{z\}} \min(\mu_1^k(z, s), \mu_1(s, z))] = \mu_1(z, z)$. By the mathematical induction, $\mu_1^n(z, z) = \mu_1(z, z)$ for every natural number n and every $z \in S$. Let p be in S with $\mu(p, p) = 0$. Then $\mu_1(p, p) = \theta(p, p) = \frac{\xi(p, p)}{2} < \xi(p, p)$. Since $\mu_1^n(z, z) = \mu_1(z, z)$ for every natural number n and every $z \in S$, $[\cup_{n=1}^{\infty} (\mu \cup \theta)^n](p, p) = [\cup_{n=1}^{\infty} \mu_1^n](p, p) = \mu_1(p, p) < \xi(p, p)$ for some $p \in S$ such that $\mu(p, p) = 0$. Hence $\cup_{n=1}^{\infty} (\mu \cup \theta)^n$, which is a G-fuzzy congruence containing μ , is contained in ξ . This contradicts that ξ is the G-fuzzy congruence generated by μ .

Inheung Chon

References

- 1. I. Chon, Generalized fuzzy congruences on semigroups, (submitted).
- 2. J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145–174.
- K. C. Gupta and R. K. Gupta, *Fuzzy equivalence relation redefined*, Fuzzy Sets and Systems **79** (1996), 227–233.
- V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155– 163.
- C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177–191.
- 6. M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165-175.
- E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38–48.
- V. Tan, Fuzzy congruences on a regular semigroup, Fuzzy Sets and Systems 117 (2001), 447–453.
- 9. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Seoul Women's University Seoul 139–774, Korea *E-mail*: ihchon@swu.ac.kr