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G-FUZZY CONGRUENCES GENERATED
BY COMPATIBLE FUZZY RELATIONS

Inheung Chon

Abstract. We define a G-fuzzy congruence, which is a generalized
fuzzy congruence, and characterize the G-fuzzy congruence gener-
ated by a left and right compatible fuzzy relation on a semigroup.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh [9]. Sub-
sequently, Goguen [2] and Sanchez [7] studied fuzzy relations in vari-
ous contexts. In [5] Nemitz discussed fuzzy equivalence relations, fuzzy
functions as fuzzy relations, and fuzzy partitions. Murali [4] developed
some properties of fuzzy equivalence relations and certain lattice the-
oretic properties of fuzzy equivalence relations. Samhan [6] discussed
the fuzzy congruence generated by a fuzzy relation on a semigroup
and studied the lattice of fuzzy congruences on a semigroup. Gupta
et al. [3] proposed a generalized definition of a fuzzy equivalence rela-
tion on a set, which we call G-fuzzy equivalence relation in this paper,
and developed some properties of that relation. In [8] Tan developed
some properties of fuzzy congruences on a regular semigroup. Chon
[1] characterized the G-fuzzy congruence generated by a fuzzy relation
on a semigroup and gave some lattice theoretic properties of G-fuzzy
congruences on semigroups. The present work has been started as a
continuation of these studies.

In section 2 we define a G-fuzzy congruence and review some ba-
sic definitions and properties of fuzzy relations and G-fuzzy congru-
ences. In section 3 we find the G-fuzzy congruence generated by a
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left and right compatible fuzzy relation µ on a semigroup S such that
sup

x 6=y∈S
µ(x, y) > 0 for some x 6= y ∈ S, find the G-fuzzy congruence

generated by a left and right compatible fuzzy relation µ on a semi-
group S such that µ(x, y) = 0 for all x 6= y ∈ S and µ(z, z) > 0 for all
z ∈ S, and show that there does not exist the G-fuzzy congruence gen-
erated by a left and right compatible fuzzy relation µ on a semigroup
S such that µ(x, y) = 0 for all x 6= y ∈ S and µ(z, z) = 0 for some
z ∈ S.

2. Preliminaries

We recall some basic definitions and properties of fuzzy relations
and G-fuzzy congruences which will be used in the next section.

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation µ in a set X
demands µ(x, x) = 1. Gupta et al. ([3]) weakened this definition as
follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset of
X×X. µ is G-reflexive in X if µ(x, x) > 0 and µ(x, y) ≤ inf

t∈X
µ(t, t) for

all x, y ∈ X such that x 6= y. µ is symmetric in X if µ(x, y) = µ(y, x)
for all x, y in X. The composition λ ◦ µ of two fuzzy relations λ, µ in
X is the fuzzy subset of X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ ◦ µ ⊆ µ. A fuzzy
relation µ in X is called G-fuzzy equivalence relation if µ is G-reflexive,
symmetric, and transitive.

Definition 2.3. Let µ be a fuzzy relation in a set X. µ is called
fuzzy left (right) compatible if µ(x, y) ≤ µ(zx, zy) (µ(x, y) ≤ µ(xz, yz))
for all x, y, z ∈ X. A G-fuzzy equivalence relation on X is called a
G-fuzzy left congruence (right congruence) if it is fuzzy left compatible
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(right compatible). A G-fuzzy equivalence relation on X is a G-fuzzy
congruence if it is a G-fuzzy left and right congruence.

Definition 2.4. Let µ be a fuzzy relation in a set X. µ−1 is defined
as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦µ−1 for fuzzy relations µ and
ν.

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then
∪∞n=1 µn is the smallest transitive fuzzy relation on X containing µ,
where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [6]. ¤

Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is
symmetric, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [6]. ¤

Proposition 2.7. If µ is a fuzzy relation on a semigroup S that
is fuzzy left and right compatible, then so is ∪∞n=1 µn, where µn =
µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 3.6 of [6]. ¤

3. G-fuzzy congruences generated by fuzzy relations

In this section we characterize the G-fuzzy congruence generated by
a left and right compatible fuzzy relation on a semigroup.

Proposition 3.1. Let µ be a fuzzy relation on a set S. If µ is
G-reflexive, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ1 = µ is G-reflexive. Suppose µk is G-reflexive.

µk+1(x, x) = (µk ◦ µ)(x, x) = sup
z∈S

min[µk(x, z), µ(z, x)]

≥ min[µk(x, x), µ(x, x)] > 0
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for all x ∈ S. Let x, y ∈ S with x 6= y. Then

inf
t∈S

µk+1(t, t) = inf
t∈S

(µk ◦ µ)(t, t)

= inf
t∈S

sup
z∈S

min[µk(t, z), µ(z, t)]

≥ inf
t∈S

min[µk(t, t), µ(t, t)]

≥ min [ inf
t∈S

µk(t, t), inf
t∈S

µ(t, t)] ≥ min[µk(x, z), µ(z, y)]

for all z ∈ S such that z 6= x and z 6= y. That is,

inf
t∈S

µk+1(t, t) ≥ sup
z∈S−{x,y}

min[µk(x, z), µ(z, y)].

Clearly
inf
t∈S

µ(t, t) ≥ min [µk(x, x), µ(x, y)]

and
inf
t∈S

µk(t, t) ≥ min [µk(x, y), µ(y, y)].

Since µk+1(t, t) ≥ µk(t, t) ≥ µ(t, t) for k ≥ 1,

inf
t∈S

µk+1(t, t) ≥ min [µk(x, x), µ(x, y)]

and
inf
t∈S

µk+1(t, t) ≥ min [µk(x, y), µ(y, y)].

Thus

inf
t∈S

µk+1(t, t) ≥ max [ sup
z∈S−{x,y}

min(µk(x, z), µ(z, y)),

min (µk(x, x), µ(x, y)), min (µk(x, y), µ(y, y))]

= sup
z∈S

min[µk(x, z), µ(z, y)]

= (µk ◦ µ)(x, y) = µk+1(x, y).

That is, µk+1 is G-reflexive. By the mathematical induction, µn is G-
reflexive for n = 1, 2, . . . . Thus inf

t∈S
[∪∞n=1 µn](t, t) = inf

t∈S
sup[µ(t, t), (µ◦

µ)(t, t), . . . ] ≥ sup [ inf
t∈S

µ(t, t), inf
t∈S

(µ ◦ µ)(t, t), . . . ] ≥ sup[µ(x, y),

(µ◦µ)(x, y), . . . ] = [∪∞n=1µ
n](x, y). Clearly [∪∞n=1 µn](x, x) > 0. Hence

∪∞n=1 µn is G-reflexive. ¤
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Theorem 3.2. Let µ be a fuzzy relation on a semigroup S such
that µ is fuzzy left and right compatible.

(1) If µ(x, y) > 0 for some x 6= y ∈ S, then the G-fuzzy congruence
generated by µ is ∪∞n=1 [µ ∪ µ−1 ∪ θ]n, where θ is a fuzzy rela-
tion on S such that θ(z, z) = sup

x 6=y∈S
µ(x, y) for all z ∈ S and

θ(x, y) = θ(y, x) ≤ min [µ(x, y), µ(y, x)] for all x, y ∈ S with
x 6= y.

(2) If µ(x, y) = 0 for all x 6= y ∈ S and µ(z, z) > 0 for all z ∈ S,
then the G-fuzzy congruence generated by µ is ∪∞n=1 µn.

(3) If µ(x, y) = 0 for all x 6= y ∈ S and µ(z, z) = 0 for some z ∈ S,
then there does not exist the G-fuzzy congruence generated by
µ.

Proof. (1) Let µ1 = µ ∪ µ−1 ∪ θ. Since θ(z, z) > 0, µ1(z, z) > 0
for all z ∈ S. Let x, y ∈ S with x 6= y. Then θ(x, y) ≤ µ(x, y) ≤
sup

x 6=y∈S
µ(x, y) = θ(t, t) for all t ∈ S. Thus

inf
t∈S

µ1(t, t) ≥ inf
t∈S

θ(t, t)

≥ max[µ(x, y), µ−1(x, y), θ(x, y)] = µ1(x, y).

That is, µ1 is G-reflexive. By Proposition 3.1, ∪∞n=1 µn
1 is G-reflexive.

Since θ(x, y) = θ(y, x), θ = θ−1. Thus

µ1(x, y) = max [µ(x, y), µ−1(x, y), θ(x, y)]

= max [µ−1(y, x), µ(y, x), θ−1(x, y)]

= max[µ−1(y, x), µ(y, x), θ(y, x)]

= µ1(y, x).

That is, µ1 is symmetric. By Proposition 2.6, ∪∞n=1 µn
1 is symmetric.

By Proposition 2.5, ∪∞n=1 µn
1 is transitive. Hence ∪∞n=1 µn

1 is a G-fuzzy
equivalence relation containing µ. Since θ(x, y) ≤ µ(x, y) ≤ µ(zx, zy),

µ1(x, y) = max [µ(x, y), µ−1(x, y), θ(x, y)]

= max [µ(x, y), µ(y, x), θ(x, y)] = max [µ(x, y), µ(y, x)]

≤ max [µ(zx, zy), µ(zy, zx)]

≤ max [µ(zx, zy), µ(zy, zx), θ(zx, zy)]

= max [µ(zx, zy), µ−1(zx, zy), θ(zx, zy)] = µ1(zx, zy)
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for all x, y, z ∈ S such that x 6= y. Since θ(x, x) = θ(zx, zx) for all
x, z ∈ S, µ1(x, x) = max [µ(x, x), µ−1(x, x), θ(x, x)] ≤ max [µ(zx, zx),
θ(zx, zx)] = max [µ(zx, zx), µ−1(zx, zx), θ(zx, zx)] = µ1(zx, zx) for
all x, z ∈ S. Thus µ1 is fuzzy left compatible. Similarly we may
show µ1 is fuzzy right compatible. By Proposition 2.7, ∪∞n=1 µn

1 is
fuzzy left and right compatible. Thus ∪∞n=1 µn

1 is a G-fuzzy con-
gruence containing µ. Let ν be a G-fuzzy congruence containing µ.
Then µ(x, y) ≤ ν(x, y), µ−1(x, y) = µ(y, x) ≤ ν(y, x) = ν(x, y), and
θ(x, y) ≤ µ(x, y) ≤ ν(x, y). Thus µ1(x, y) ≤ ν(x, y) for all x, y ∈ S
such that x 6= y. Since ν(a, a) ≥ ν(x, y) ≥ µ(x, y) for all a, x, y ∈
S such that x 6= y, θ(a, a) = sup

x6=y∈S
µ(x, y) ≤ ν(a, a) for all a ∈

S. Since ν(a, a) ≥ µ(a, a) = µ−1(a, a) and ν(a, a) ≥ θ(a, a) for all
a ∈ S, max [µ(a, a), µ−1(a, a), θ(a, a)] ≤ ν(a, a) for all a ∈ S. Thus
µ1 ⊆ ν. Suppose µk

1 ⊆ ν. Then µk+1
1 (b, c) = (µk

1 ◦ µ1)(b, c) =
sup
d∈S

min[µk
1(b, d), µ1(d, c)] ≤ sup

d∈S
min [ν(b, d), ν(d, c)] = (ν ◦ ν)(b, c) for

all b, c ∈ S. That is, µk+1
1 ⊆ (ν ◦ν). Since ν is transitive, µk+1

1 ⊆ ν. By
the mathematical induction, µn

1 ⊆ ν for every natural number n. Thus
∪∞n=1 [µ∪µ−1∪θ]n = ∪∞n=1 µ1

n = µ1∪ (µ1 ◦µ1)∪ (µ1 ◦µ1 ◦µ1) · · · ⊆ ν.
(2) Let x, y ∈ S with x 6= y. Since µ(x, y) = 0, inf

t∈S
µ(t, t) ≥ µ(x, y).

Thus µ is G-reflexive. Since µ(x, y) = 0, µ is symmetric. By Propo-
sition 2.5, Proposition 2.6, and Proposition 3.1, ∪∞n=1 µn is a G-fuzzy
equivalence relation containing µ. Since µ is fuzzy left and right com-
patible from the hypothesis, ∪∞n=1 µn is a G-fuzzy congruence con-
taining µ by Proposition 2.7. Let ν be a G-fuzzy congruence con-
taining µ. By the mathematical induction as shown in Theorem 3.2
(1), we may show that µn ⊆ ν for every natural number n. Hence
∪∞n=1 µn = µ ∪ (µ ◦ µ) ∪ (µ ◦ µ ◦ µ) · · · ⊆ ν.

(3) Suppose ξ is the G-fuzzy congruence generated by µ. Then
ξ(z, z) > 0 for every z ∈ S. Let θ be a fuzzy relation such that
θ(a, b) = ξ(a,b)

2 for all a, b ∈ S. Then θ(z, z) > 0 for all z ∈ S. Let
x, y ∈ S with x 6= y. Since ξ is G-reflexive, inf

t∈S
ξ(t, t) ≥ ξ(x, y). Since

θ(a, b) = ξ(a,b)
2 for all a, b ∈ S, inf

t∈S
θ(t, t) ≥ θ(x, y). Since µ(x, y) = 0,

inf
t∈S

(µ ∪ θ)(t, t) ≥ inf
t∈S

θ(t, t) ≥ (µ ∪ θ)(x, y). That is, µ ∪ θ is G-

reflexive. Since ξ is symmetric, θ is symmetric. Since θ is symmetric
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and µ(x, y) = 0, µ ∪ θ = (µ ∪ θ)−1. That is, µ ∪ θ is symmetric. By
Proposition 2.5, Proposition 2.6, and Proposition 3.1, ∪∞n=1 (µ ∪ θ)n

is a G-fuzzy equivalence relation containing µ. Since θ(a, b) = ξ(a,b)
2

for all a, b ∈ S and ξ is fuzzy left and right compatible, θ is fuzzy left
and right compatible. Since µ is fuzzy left and right compatible, µ ∪ θ
is fuzzy left and right compatible. By Proposition 2.7, ∪∞n=1 (µ ∪ θ)n

is a G-fuzzy congruence containing µ. Since θ(a, b) = ξ(a,b)
2 ≤ ξ(a, b)

and µ(a, b) ≤ ξ(a, b) for all a, b ∈ S, µ ∪ θ ⊆ ξ. Let µ1 = µ ∪ θ.
Then µ1 ⊆ ξ. By the mathematical induction as shown in Theorem
3.2 (1), we may show that µn

1 ⊆ ξ for every natural number n. Hence
∪∞n=1 [µ ∪ θ]n = ∪∞n=1 µ1

n ⊆ ξ. Let v 6= w ∈ S. Then µ1(v, w) =
(µ∪ θ)(v, w) = θ(v, w) ≤ inf

t∈S
θ(t, t) ≤ µ1(z, z) for every z ∈ S. Suppose

µk
1(v, w) ≤ µ1(z, z) for every z ∈ S. Then

µk+1
1 (v, w) = sup

s∈S
min [µk

1(v, s), µ1(s, w)]

= max [ sup
s∈S−{v,w}

min(µk
1(v, s), µ1(s, w)),

min (µk
1(v, v), µ1(v, w)), min (µk

1(v, w), µ1(w,w))]

≤ max [µ1(z, z), µ1(z, z), µk
1(v, w)] = µ1(z, z).

By the mathematical induction, µn
1 (v, w) ≤ µ1(z, z) for every natural

number n. Clearly µk
1(z, z) = µ1(z, z) for k = 1. Suppose µk

1(z, z) =
µ1(z, z). Since µk

1(z, s) ≤ µ1(z, z) for s 6= z ∈ S, µk+1
1 (z, z) =

sup
s∈S

min [µk
1(z, s), µ1(s, z)] = max [ sup

s∈S−{z}
min(µk

1(z, s), µ1(s, z)),

min (µk
1(z, z), µ1(z, z))] = µ1(z, z). By the mathematical induction,

µn
1 (z, z) = µ1(z, z) for every natural number n and every z ∈ S. Let

p be in S with µ(p, p) = 0. Then µ1(p, p) = θ(p, p) = ξ(p,p)
2 < ξ(p, p).

Since µn
1 (z, z) = µ1(z, z) for every natural number n and every z ∈ S,

[∪∞n=1 (µ ∪ θ)n](p, p) = [∪∞n=1 µ1
n](p, p) = µ1(p, p) < ξ(p, p) for some

p ∈ S such that µ(p, p) = 0. Hence ∪∞n=1 (µ ∪ θ)n, which is a G-fuzzy
congruence containing µ, is contained in ξ. This contradicts that ξ is
the G-fuzzy congruence generated by µ. ¤
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