WEAK CONVERGENCE OF VARIOUS MODELS TO FRACTIONAL BROWNIAN MOTION

JOO-MOK KIM

Abstract. We consider arrival process and ON/OFF source model which allows for long packet trains and long inter-train distances. We prove the weak convergence of these processes to Fractional Brownian motion. Finally, we figure out the coefficients of $B_H(t)$ and time t when ON/OFF periods have the Pareto distribution.

1. Introduction

Many researchers have studied long range dependent process and self-similar process because of burstiness of network traffic at any time scale. Though the various models proposed for capturing the long-range dependent nature of network traffic are all either exactly or asymptotically second order self-similar, their effect on network performance can be very different ([6], [7], [8]).

Self-similarity, long range dependence and heavy tailed process have been observed in many time series, i.e. network traffic and finance ([4]). In particular, fractional Brownian motion and FARIMA in modern packet network traffic has been the focus of much attention ([5]). Various methods for estimating the self-similar parameter and intensity of long range dependence in time series has been investigated ([7], [9]). And, there has been a recent flood of literature and discussion on the tail behavior of queue-length distribution, motivated by potential applications to the design and control by high-speed telecommunication networks ([1], [2], [3]).

In this paper we consider arrival process based on autoregressive process and show that the suitably scaled distributions of these processes

Received May 11, 2007.
2000 Mathematics Subject Classification: 60G10, 60G18, 60G51.
Key words and phrases: Weak Convergence, ON/OFF source model, FBM.
converge to fractional Brownian motion in the sense of finite dimensional distributions.

On the other hand, we consider idealized ON/OFF source model which allows for long packet trains and long inter-train distances. [9] proved that the aggregate cumulative packet process behaves like linear combination of fractional Brownian motion $B_H(t)$ and time t. When ON/OFF periods have the Pareto distribution, we figure out the coefficients of $B_H(t)$ and time t.

In section 2, we define the short range dependence, long range dependence, fractional Brownian motion and self-similarity. In section 3, we prove the weak convergence of arrival process and autoregressive process to fractional Brownian motion. In section 4, we figure out the coefficients of $B_H(t)$ and time t when ON/OFF periods have the Pareto distribution.

2. Definition and Preliminary

In this section we first define short range dependence and long range dependence. Let $\tau_X(k)$ be the covariance of stationary stochastic process $X(t)$.

Definition 2.1. A stationary stochastic process $X(t)$ exhibits short range dependence if

$$\sum_{k=-\infty}^{\infty} |\tau_X(k)| < \infty$$

Definition 2.2. A stationary stochastic process $X(t)$ exhibits long range dependence if

$$\sum_{k=-\infty}^{\infty} |\tau_X(k)| = \infty$$

A standard example of a long range dependent process is fractional Brownian motion, with Hurst parameter $H > \frac{1}{2}$.

Definition 2.3. A stochastic process $\{B_H(t)\}$ is said to be a Fractional Brownian motion (FBM) with Hurst parameter H if

1. $B_H(t)$ has stationary increments
2. for $t > 0$, $B_H(t)$ is normally distributed with mean 0
3. $B_H(0) = 0$ a.s.
4. The increments of $B_H(t)$, $Z(j) = B_H(j + 1) - B_H(j)$ satisfy

$$\rho_Z(k) = \frac{1}{2}\{|k + 1|^{2H} + |k - 1|^{2H} - 2k^{2H}\}$$

Fractional Brownian motion is an important example of self-similar process defined below.

Definition 2.4. A continuous process $X(t)$ is self-similar with self-similarity parameter $H \geq 0$ if it satisfies the condition:

$$X(t) \overset{d}{=} c^{-H}X(ct), \quad \forall t \geq 0, \forall c > 0,$$

where the equality is in the sense of finite-dimensional distributions.

3. Weak Convergence to Fractional Brownian motion

Let $X^j(i)$ be the number of arrivals in the ith time unit of jth source. Let

$$X_M(i) = \sum_{j=1}^{M}(X^j(i) - E(X^j(i)),$$

and $\tau(k)$ denote the covariance of $X_1(i)$.

Lemma 3.1. ([4]) The stationary sequence

$$\frac{1}{M^{1/2}}X_M(i)$$

converges in the sense of finite dimensional distributions to $G_H(i)$, where $G_H(i)$ represents a stationary Gaussian process with covariance function of the same form as $\tau(k)$, as $M \to \infty$.

Theorem 3.1.

$$\lim_{T \to \infty} \lim_{M \to \infty} \frac{1}{THM^{1/2}} \sum_{i=0}^{[T]} X_M(i)$$

converges to $\{\sigma_0B_H(t)|0 \leq t \leq 1\}$ in the sense of finite dimensional distributions. Furthermore, as $M \to \infty$ and $T \to \infty$,

(a) (Long Range dependence) If $\tau(k) \sim ck^{2H-2}$, $c > 0$ and $1/2 < H < 1$,
then \(\sigma_0^2 = \frac{c}{H(2H - 1)} \).

(b) If

\[
\sum_{k=1}^{\infty} |\tau(k)| < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \tau(k) = c > 0,
\]

then \(\sigma_0^2 = c \).

(c) (Short Range dependence)

\[
\tau(k) \sim ck^{2H-2}, \quad c < 0 \quad \text{and} \quad 0 < H < 1/2,
\]

then \(\sigma_0^2 = -\frac{c}{H(2H - 1)} \).

Proof. Set \(Z_i = 1/M^{1/2}X_M(i) \). By Lemma 3.1, \(Z_i \) converges in the sense of finite dimensional distributions to \(G_H(i) \) as \(M \) goes to infinity. By Theorem 7.2.11 of [5], the finite dimensional distributions of \(T^{-H} \sum_{i=0}^{[Tt]} Z_i \) converges to those of \(\{\sigma_0B_H(t), 0 \leq t \leq 1\} \).

THEOREM 3.2. Let \(X_t \) be the autoregressive process of order one, i.e. \(X_t = \phi_1X_{t-1} + a_t \), where \(a_t \sim N(0,1) \) for each \(t \). Then

\[
\lim_{T \to \infty} \lim_{M \to \infty} \sum_{i=0}^{[Tt]} X_M(i) = \sqrt{\frac{\phi_1}{1 - \phi_1}} B(t),
\]

where, \(B(t) \) is a Brownian Motion.

Proof. We know that

\[
(1 - \phi_1B)X_t = a_t,
\]

i.e.

\[
X_t = \sum_{i=0}^{\infty} \phi_1^i a_{t-i}.
\]

And, we get

\[
\text{Cov}_{X_t}(k) = \phi_1^k, \quad k \geq 1, \quad |\phi_1| < 1.
\]

Therefore,

\[
\tau(k) = \phi_1^k,
\]

for large \(M \). Since

\[
\sum \tau(k) = \sum \phi_1^k = \frac{\phi_1}{1 - \phi_1} < \infty,
\]
we get, by Theorem 3.1 (b),

$$\lim_{T \to \infty} \lim_{M \to \infty} \sum_{i=0}^{[Tt]} X_M(i) = \frac{\phi_1}{1 - \phi_1} B_{1/2}(t) = \frac{\phi_1}{1 - \phi_1} B(t).$$

\[

4. Convergence of ON/OFF Source Model

Let us consider the stationary time series \(\{X(t), t \geq 0\} \). \(X(t) = 1 \) means that there is a packet at time \(t \) and \(X(t) = 0 \) means that there is no packet. Viewing \(X(t) \) as the reward at time \(t \), we have a reward of 1 throughout on ON-period, then a reward of 0 throughout the following OFF-periods, then 1 again, and so on. Suppose the lengths of the ON-periods are i.i.d., those of the OFF-periods are i.i.d. and the lengths of ON-periods and OFF-periods are independent. But the ON-periods and OFF-periods may have the different distributions.

Suppose that there are \(M \) i.i.d. sources. Since each source sends its own sequence of packet trains, it has its own reward sequence \(\{X^{(m)}(t)\} \). Therefore, the cumulative packet count at time \(t \) is

$$\sum_{m=1}^{M} X^{(m)}(t).$$

Rescaling time by a factor \(T \), we consider the aggregated cumulative packet counts

$$X_M(Tt) = \int_0^{Tt} \left(\sum_{m=1}^{M} X^{(m)}(u) \right) du$$

in the interval \([0, Tt]\). To specify the distributions of ON-period \(O_1 \) and OFF-periods \(O_2 \), let

$$\mu_1 = EO_1, \mu_2 = EO_2$$

and as \(x \to \infty \), tailing distributions of \(O_1, O_2 \) are

$$l_1 x^{-\alpha_1} L_1(x) \quad \text{and} \quad l_2 x^{-\alpha_2} L_2(x)$$

with \(1 < \alpha_j < 2 \), where is a constant \(l_j > 0 \) and \(L_j > 0 \) is a slowly varying function at infinity.
Notation. When $1 < \alpha_j < 2$, set
\[a_j = l_j(\Gamma(2 - \alpha_j))/(\alpha_j - 1), \]
\[b = \lim_{t \to \infty} t^{\alpha_2 - \alpha_1} \frac{L_1(t)}{L_2(t)}. \]
If $0 < b < \infty$ then set
\[\sigma^2 = \frac{2(\mu_2^3 a_1 b + \mu_1^3 a_2)}{(\mu_1 + \mu_2)^3 \Gamma(4 - \alpha_{\text{min}})}. \]
if $b = 0$ or $b = \infty$ then set
\[\sigma^2 = \frac{2\mu_{\text{max}}^2 a_{\text{min}}}{(\mu_1 + \mu_2)^3 \Gamma(4 - \alpha_{\text{min}})}. \]

Lemma 4.1. For large M and T, the aggregate packet process
\[\{X_M(Tt), t \geq 0\} \]
behaves statistically like
\[TM \frac{\mu_1}{\mu_1 + \mu_2} t + T^H \sqrt{L(t)M} \sigma_B H(t) \]
where $H = (3 - \alpha_{\text{min}})/2$ and σ is as above.

Proof. Theorem 1 of [9]

Suppose that ON/OFF periods O_j has the Pareto distribution
\[P(O_j > x) = K^{\alpha_j}x^{-\alpha_j} \text{ for } x \geq K > 0. \]
When $1 < \alpha_j < 2$, each periods has infinite variance.

Theorem 4.1. Let O_j be ON/OFF-periods that has the Pareto distributions as above. Then, for large M and T, the aggregate packet process \[\{X_M(Tt), t \geq 0\} \]
behaves statistically like
\[TM \frac{\alpha_1 \alpha_2 - \alpha_1}{2\alpha_1 \alpha_2 - \alpha_1 - \alpha_2} t + T^H \sigma_B H(t) \]
where, $H = (3 - \alpha_{\text{min}})/2$.

Case 1. Suppose that O_j have the same distributions, i.e., $\alpha_1 = \alpha_2 = \alpha$, then
\[H = \frac{3 - \alpha}{2}. \]
and
\[\sigma^2 = \frac{K^{\alpha-1}\Gamma(2-\alpha)}{2\alpha\Gamma(4-\alpha)} \]

Case 2. If \(\alpha_1 < \alpha_2 \), then
\[H = \frac{3 - \alpha_1}{2} \]
and
\[\sigma^2 = \frac{2K^2\alpha_1^2(\alpha_1 - 1)(\alpha_2 - 1)^3a_{\min}}{(2\alpha_1\alpha_2K - \alpha_1K - \alpha_2K)^3} \]

Case 3. If \(\alpha_1 > \alpha_2 \), then
\[H = \frac{3 - \alpha_2}{2} \]
and
\[\sigma^2 = \frac{2K^2\alpha_2^2(\alpha_2 - 1)(\alpha_1 - 1)^3a_{\min}}{(2\alpha_1\alpha_2K - \alpha_1K - \alpha_2K)^3} \]

Proof. Since the expectation of the Pareto distribution is
\[\frac{\alpha_jK}{\alpha_j - 1} \]
for \(j = 1, 2, \cdots \). By Lemma 4.1, the coefficient of time \(t \) is
\[\frac{\alpha_1\alpha_2 - \alpha_1}{2\alpha_1\alpha_2 - \alpha_1 - \alpha_2} \].

Case 1. Since \(O_j \) have the same distributions, we get
\[\lim_{t \to \infty} t^{\alpha_2 - \alpha_1} = 1. \]
And we know
\[\alpha_1 = \alpha_2 = K^\alpha\Gamma(2-\alpha)/(\alpha - 1). \]
Thus, we get
\[\sigma^2 = \frac{K^{\alpha-1}\Gamma(2-\alpha)}{2\alpha\Gamma(4-\alpha)}. \]

In the similar way, we can get Case 2 and Case 3. \(\Box\)
References

School of General Education
Semyung University
Jecheon 390–711, Korea

E-mail: jmkim@semyung.ac.kr