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BOUND FOR THE ZEROS OF QUATERNIONIC POLYNOMIAL

WITHOUT RESTRICTIONS

Bilal Dar∗,† and Abdul Liman

Abstract. In this paper, we are concerned with the problem of locating the ze-
ros of regular polynomials of quaternionic variable without any restriction on the
coefficients. We derive new bounds for the zeros of these polynomials by virtue
of a maximum modulus theorem and the structure of the zero sets in the newly
developed theory of regular functions and polynomials of a quaternionic variable.
With no restriction on the coefficients, our results provide new bound for the zeros
of quaternionic polynomials in a four dimensional space.

1. Introduction

The study of polynomial zeros indeed has a rich history in mathematics and has
played a crucial role in the development of various mathematical concepts and theories.
The quest for understanding the roots of polynomials has led to the formulation of
algebraic techniques and tools, making it a fundamental part of contemporary algebra.
Theoretical research inspired by polynomial zeros has contributed significantly to the
broader field of mathematics. Notably, the development of algebraic methods and the
study of algebraic structures emerged from the investigation of polynomial equations
and their solutions. This exploration laid the foundation for abstract algebra, which
encompasses the study of algebraic structures such as groups, rings, and fields. The
concept of limiting polynomials introduces a useful perspective when dealing with the
zeros of a polynomial. This approach can be beneficial when algebraic and analytic
methods face challenges in determining the roots. By considering the behaviour of
the polynomial as certain parameters approach limiting values, researchers can gain
valuable information about the distribution and characteristics of the zeros. Putting
restrictions on the coefficients of a polynomial can be a fruitful approach for achieving
better bounds. These restrictions may take various forms, such as constraints on
the magnitudes, signs, or relationships among the coefficients. By introducing such
limitations, researchers aim to simplify the problem and obtain more manageable and
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insightful results regarding the location and behaviour of the polynomial zeros. In
this direction, the following elegant result on the location of zeros of a polynomial
with restricted coefficients is known as Eneström-Kakeya Theorem (see [4], [12], [13]).
G. Eneström appears to have been the first to obtain a finding of this sort while
researching a problem in pension fund theory. S. Kakeya [11] presented a paper in the
Tôhoku Mathematical Journal in 1912 that featured the following more comprehensive
result:

Theorem 1.1. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n such that 0 < a0 ≤

a1 ≤ ... ≤ an, then all the zeros of p lie in |z| ≤ 1.

In the literature, for example see ( [1], [8], [10], [12], [13]), there exist various ex-
tensions and generalizations of Eneström-Kakeya Theorem. In 1967, Joyal, Labelle,
and Rahman [10] published a result which might be considered the foundation of the
studies which we are currently studying. The Eneström-Kakeya Theorem, as stated
in Theorem 1.1, deals with polynomials with non-negative coefficients which form a
monotone sequence. Joyal, Labelle, and Rahman generalized Theorem 1.1 by drop-
ping the condition of non-negativity and maintaining the condition of monotonicity.
Namely, they proved:

Theorem 1.2. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n such that a0 ≤

a1 ≤ ... ≤ an, then all the zeros of p lie in |z| ≤ 1
|an|(|a0|+ an − a0).

2. Preliminary

In the recent study (for example, see [3], [5] [6], [2], [14]), the development of a new
theory of regularity for functions, particularly focusing on polynomials of a quater-
nionic variable, represents a significant advancement in mathematical research. This
theory seems to extend the study of functions beyond the realm of complex variables,
specifically to quaternionic variables. The extension to quaternionic variables is inter-
esting because quaternions, unlike complex numbers, have more than one imaginary
unit and exhibit richer mathematical structures. The mentioned theory appears to
draw parallels between the properties of holomorphic functions in the complex plane
and the regular functions in the quaternionic space. Holomorphic functions in the
complex plane are well studied, and their zero sets play a crucial role in understand-
ing their behavior. The preliminary steps of the theory involve describing the structure
of the zero sets of quaternionic regular functions and investigating the factorization
property of zeros. Understanding the distribution and behaviour of zeros is a crucial
aspect of studying functions, and factorization properties provide insights into how
functions can be decomposed based on their zeros.
It is worth noting that quaternionic analysis introduces additional challenges com-
pared to complex analysis due to the non-commutativity of quaternion multiplica-
tion. As a result, extending concepts from complex analysis to quaternionic analysis
often requires careful consideration and adaptation of mathematical techniques. In
this regard, Gentili and Stoppato [5] gave a necessary and sufficient condition for a
quaternionic regular function to have zero at a point in terms of the coefficients of
the power series expansion of the function. Before we state our results, we need to
introduce some preliminaries on quaternions and quaternionic polynomials.
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Quaternions: Quaternions are the extension of complex numbers to four dimensions,
introduced by William Rowan Hamilton in 1843. The set of all quaternions is denoted
by H in honour of Sir Hamilton and are generally represented in the form q = α +
iβ + jγ + kδ ∈ H, where α, β, γ, δ ∈ R and i, j, k are the fundamental quaternion
units, such that i2 = j2 = k2 = ijk = −1. Each quaternion q has a conjugate. The
conjugate of a quaternion q = α + iβ + jγ + kδ is denoted by q and is defined as
q = α− iβ − jγ − kδ. Moreover, the norm (or length) of a quaternion q is given by

||q|| =
√
qq =

√
α2 + β2 + γ2 + δ2.

The quaternions are the standard example of a non-commutative division ring and
also form a four-dimensional vector space over R with

{
1, i, j, k

}
as a basis.

The indeterminate for a quaternionic polynomial is defined as q. Without commutativ-
ity, we have the polynomial aqn and the polynomial a0qa1q · · · qan, a = a0a1 · · · an. To
address this issue, we use the standard that polynomials have indeterminate on the left

and coefficients on the right, resulting in the quaternionic polynomial p1(q) =
m∑
s=0

qsas.

For such p1 and p2(q) =
n∑

s=0

qsbs, the regular product of p1 and p2 is defined as(
p1 ∗ p2

)
(q) =

n,m∑
i,j=0

qi+jaibj. This is consistent with the definition of the regular prod-

uct for the power series of a quaternionic variable (see definition 3.1 of [5]). If p1 has
real coefficients, then ∗ multiplication is equivalent to point-wise multiplication. In
general, the product rule ∗ is associative rather than commutative. We define the set
of quaternionic polynomials by

Pn :=

{
p ; p(q) =

n∑
l=0

qlal , q ∈ H
}

where al ∈ H or R, 0 ≤ l ≤ n.
Indeed, the absence of commutativity in quaternions introduces distinct behaviours
for polynomials compared to their counterparts in the real or complex cases. The
Factor Theorem, which states that a being a zero of p(z) is equivalent to (z − a)
being a divisor of p(z), relies on the commutativity of the underlying ring. In the case
of real or complex polynomials, the ring of coefficients is commutative, allowing for
the straightforward application of the Factor Theorem (see Theorem III. 6.6 of [7]).
The non-commutativity of quaternion multiplication results in a departure from the
familiar behaviour of polynomials. In the quaternionic case, the factor Theorem, as
traditionally stated, may not hold in the same way.
In quaternionic analysis, zero sets of quaternionic polynomials can exhibit different
characteristics compared to their real or complex counterparts. The lack of commu-
tativity introduces complexities in the factorization properties of polynomials, and
the relationship between zeros and divisors may not be as straightforward. This non-
commutative behaviour adds an extra layer of intricacy to the study of polynomials
in quaternionic analysis, making it a fascinating and challenging area of research.
Researchers working in quaternionic analysis often need to develop new tools and
techniques to understand the behaviour of quaternionic polynomials and their zero
sets. In the Quaternion case, the second degree polynomial q2 + 1 has an infinite
number of zeros, namely q0 = i orj ork and all those given by w0 = h−1q0h ∀h ∈ H.
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It will be interesting to locate all zeros of a quaternionic polynomial. In this direction,
Carney et al. [3] proved the following extension of Theorem 1.1 for the quaternionic
polynomial p ∈ Pn. More precisely, they proved the following result:

Theorem 2.1. If p ∈ Pn is a quaternionic polynomial of degree n with real
coefficients satisfying 0 < a0 ≤ a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ 1.

In the same paper, they proved the following result which replaces the condition of
monotonicity on the real coefficients by monotonicity in the real and imaginary parts
of the quaternion coefficients:

Theorem 2.2. If p ∈ Pn is a quaternionic polynomial of degree n where al =
αl + βli+ γlj + δlk ∈ H ; 0 ≤ l ≤ n and

α0 ≤ α1 ≤ · · · ≤ αn ; β0 ≤ β1 ≤ · · · ≤ βn

γ0 ≤ γ1 ≤ · · · ≤ γn ; δ0 ≤ δ1 ≤ · · · ≤ δn

then all the zeros of p lie in

|q| ≤
(
|α0| − α0 + an

)
+
(
|β0| − β0 + βn

)
+
(
|γ0| − γ0 + γn

)
+
(
|δ0| − δ0 + δn

)
|an|

.

The development of a new bound for the zeros of quaternionic polynomials, espe-
cially without imposing restrictions on the coefficients, indicates progress in under-
standing the behaviour of these polynomials. To obtain a better bound than what is
provided by existing theorems, such as Theorem 2.2, suggests advancements in the
precision and accuracy of characterizing the distribution of zeros in quaternionic poly-
nomials. This could have implications for various applications in mathematics and
related fields where quaternionic polynomials arise. The absence of restrictions on
the coefficients is noteworthy, as it implies that the bound holds for a broader class
of quaternionic polynomials. This generality enhances the applicability of the results
and may contribute to a deeper understanding of the relationships between the coef-
ficients and the zeros in quaternionic polynomials. As such, we provide a new bound
for the zeros of quaternionic polynomials without any restriction on the coefficients.

3. Main Results

Theorem 3.1. All zeros of the quaternion polynomial p ∈ Pn of degree n where
al = αl + βli+ γlj + δlk ∈ H ; 0 ≤ l ≤ n lie in

|q| ≤ 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ n

p−1
p Ap

)

where Ap =

(
n∑

s=1

∣∣∣as − as−1

∣∣∣p) 1
p

and p ≥ 1.

Letting p → ∞ in Theorem 3.1 and noting that

lim
p→∞

( n∑
s=1

∣∣as − as−1

∣∣p) 1
p

= max
1≤s≤n

∣∣as − as−1

∣∣,
we obtain the following result:
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Theorem 3.2. All zeros of the quaternion polynomial p ∈ Pn of degree n where
al = αl + βli+ γlj + δlk ∈ H ; 0 ≤ l ≤ n lie in

|q| ≤ 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ nM

)
,

where M = max1≤s≤n

∣∣as − as−1

∣∣.
Taking p = 1 in Theorem 3.1, we get the following result:

Theorem 3.3. All zeros of the quaternion polynomial p ∈ Pn of degree n where
al = αl + βli+ γlj + δlk ∈ H ; 0 ≤ l ≤ n lie in

|q| ≤ 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ A1

)
where A1 =

n∑
s=1

∣∣∣as − as−1

∣∣∣.
From the definition ofM and A1, we obtain A1 ≤ nM , therefore, Theorem 3.3 provides
a better bound than Theorem 3.2.
If we take in Theorem 3.3 all coefficients real i.e, al = αl , 0 ≤ l ≤ n satisfying
an ≥ an−1 ≥ · · · ≥ a0 so that βl = γl = δl = 0 ∀ l = 0, 1, 2, · · · , n, we get the following
quaternion analogue of Theorem 1.2:

Theorem 3.4. All zeros of the quaternion polynomial p ∈ Pn of degree n with
real coefficients satisfying an ≥ an−1 ≥ · · · ≥ a0 lie in

|q| ≤ 1

|an|

(
|α0|+ an − a0

)
.

Obviously for a0 > 0, Theorem 3.4 reduces to Theorem 2.1.
Next if we assume for 0 ≤ l ≤ n

αn ≥ αn−1 ≥ · · · ≥ αl ; βn ≥ βn−1 ≥ · · · ≥ βl

γn ≥ γn−1 ≥ · · · ≥ γl ; δn ≥ δn−1 ≥ · · · ≥ δl,(1)

so that∣∣∣as − as−1

∣∣∣ = ∣∣∣(αs − αs−1) + i(βs − βs−1) + j(γs − γs−1) + k(δs − δs−1)
∣∣∣

≤ |αs − αs−1|+ |βs − βs−1|+ |γs − γs−1|+ |δs − δs−1|
then, we obtain

A1 ≤
n∑

s=1

[
|αs − αs−1|+ |βs − βs−1|+ |γs − γs−1|+ |δs − δs−1|

]
=

n∑
s=l+1

[
|αs − αs−1|+ |βs − βs−1|+ |γs − γs−1|+ |δs − δs−1|

]
+

l∑
s=1

[
|αs − αs−1|+ |βs − βs−1|+ |γs − γs−1|+ |δs − δs−1|

]
=

(
αn − αl

)
+
(
βn − βl

)
+
(
γn − γl

)
+
(
δn − δl

)
+

l∑
s=1

[
|αs − αs−1|+ |βs − βs−1|+ |γs − γs−1|+ |δs − δs−1|

]
.(2)
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Inequality (2) demonstrates that Theorem 3.3 provides a refinement of the recent
result by D. Tripathi [15] [Theorem 3.1].

4. Lemmas

In order to prove the Theorem 3.1, we need the following lemmas:
Lemma 1. Let f and g be given quaternionic power series with radii of convergence
greater than R and let q0 ∈ B(0, R). Then

(
f ∗ g

)
(q0) = 0 if and only if f(q0) = 0 or

f(q0) ̸= 0 implies g
(
f(q0)

−1q0f(q0)
)
= 0.

Above lemma is due to Gentili et al. [5].
Lemma 2. Let B = B(0, R) be a ball in H with centre 0 and radius R and let
f : B → H be a regular function. if |f | has a relative maximum at a point a ∈ B then
f is constant on B.
Above lemma is due to Gentili et al. [6].
Following Lemma is known result deduced from Jensen’s inequality [9] for generalized
mean of positive real numbers.
Lemma 3. If λl ; i = 1, 2, · · · , n are non-negative numbers then for 0 < t ≤ p

(
1

n

n∑
s=1

λt
i

) 1
t

≤
(
1

n

n∑
s=1

λp
i

) 1
p

.

5. Proof of Theorem

Proof of Theorem 3.1

Proof. We have,

p(q) ∗ (1− q) =
(
qnan + qn−1an−1 + · · ·+ qa1 + a0

)
∗ (1− q)

= −qn+1an + qn(an − an−1) + qn−1(an−1 − an−2) + · · ·+ q(a1 − a0) + a0

= f(q)− qn+1an(3)

where f(q) = a0+
n∑

s=1

qs(as−as−1). By Lemma 1, p(q)∗(1−q) = 0 if and only if either

p(q) = 0 or p(q) ̸= 0 implies 1− p(q)−1qp(q) = 0. Notice that 1− p(q)−1qp(q) = 0 is
equivalent to p(q)−1qp(q) = 1 and if p(q) ̸= 0, this implies that q = 1. So the only
zeros of p(q) ∗ (1− q) = 0 are zeros of p(q) and q = 1. Applying Lemma 3 with t = 1,
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we have for |q| = 1 and p ≥ 1

|f(q)| ≤
∣∣∣∣a0 + n∑

s=1

qs(as − as−1)

∣∣∣∣
≤ |a0|+

n∑
s=1

∣∣qs∣∣∣∣as − as−1

∣∣
= |a0|+ n

(
1

n

n∑
s=1

∣∣as − as−1

∣∣)

≤ |a0|+ n

(
1

n

n∑
s=1

∣∣as − as−1

∣∣p) 1
p

=
∣∣α0 + β0i+ γ0j + δ0k +

∣∣+ n
p−1
p

( n∑
s=1

∣∣as − as−1

∣∣p) 1
p

≤
∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap,(4)

where Ap =

(
n∑

s=1

∣∣as − as−1

∣∣p) 1
p

.

We have

max
|q|=1

∣∣∣qn ∗ f(1
q
)
∣∣∣ = max

|q|=1

∣∣∣qnf(1
q
)
∣∣∣ = max

|q|=1

∣∣∣f(1
q
)
∣∣∣ = max

|q|=1

∣∣∣f(q)∣∣∣.
Therefore |qn ∗ f(1

q
)| has same bound on |q| = 1 as of |f(q)|, hence we obtain from

inequality (4)

∣∣∣qn ∗ f(1
q
)
∣∣∣ ≤ ∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap for |q| = 1.

By Maximum Modulus Theorem, we have∣∣∣qn ∗ f(1
q
)
∣∣∣ = ∣∣∣qnf(1

q
)
∣∣∣ ≤ ∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap for |q| ≤ 1.

This implies,

|qn|
∣∣∣f(1

q
)
∣∣∣ ≤ ∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap for |q| ≤ 1.

Replacing q by 1
q
, we obtain

|f(q)| ≤
(∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap

)
|q|n for |q| ≥ 1.(5)
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With the help of inequality (5), we obtain from equation (3) that for |q| ≥ 1∣∣p(q) ∗ (1− q)
∣∣ = ∣∣f(q)− qn+1an

∣∣
≥ |q|n+1|an| −

∣∣f(q)∣∣
≥ |q|n+1|an| −

(∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap

)
|q|n

= |q|n
[
|q||an| −

(∣∣α0

∣∣+ ∣∣β0

∣∣+ ∣∣γ0∣∣+ ∣∣δ0∣∣+ n
p−1
p Ap

)]
> 0

if

|q| > 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ n

p−1
p Ap

)
.

This implies, p(q) ∗ (1− q) ̸= 0 if

|q| > 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ n

p−1
p Ap

)
.

This gives, p(q) ∗ (1− q) = 0 if

|q| ≤ 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ n

p−1
p Ap

)
.

Since the only zeros of p(q) ∗ (1 − q) are q = 1 and the zeros of p(q), it follows that
all the zeros of p(q) lie in

|q| ≤ 1

|an|

(
|α0|+ |β0|+ |γ0|+ |δ0|+ n

p−1
p Ap

)
.

This completes the proof of Theorem 3.1.
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