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QUASI-CYCLIC SELF-DUAL CODES WITH FOUR FACTORS

Hyun Jin Kim†, Whan-Hyuk Choi∗,‡, and Jung-Kyung Leeᵀ

Abstract. In this study, we examine `-quasi-cyclic self-dual codes of length `m
over F2, provided that the polynomial Xm − 1 has exactly four distinct irreducible
factors in F2[X]. We find the standard form of generator matrices of codes over
the ring R ∼= Fq[X]/(Xm − 1) and the conditions for the codes to be self-dual. We
explicitly determine the forms of generator matrices of self-dual codes of lengths 2
and 4 over R.

1. Introduction

Quasi-cyclic codes are recognized as being asymptotically good [8] and are linked
to other areas such as convolutional codes and S-boxes [2,5]. Self-dual codes are also
well known for their connection with other combinatorial structures, such as designs
and lattices [1, 3, 4], as well as invariant theory [13].

Cyclic codes, which are considered a special case of quasi-cyclic codes with an
index of 1, demonstrate that quasi-cyclic codes can also be considered as modules
over the group algebra of a cyclic group. Ling and Solé [10,12] have examined quasi-
cyclic codes over finite fields Fq as linear codes over the ring R = Fq[X]/(Xm − 1),
particularly when m, a positive integer, is coprime to q. Their research established a
one-to-one correspondence between quasi-cyclic codes over Fq with an index of ` and
a length of `m and linear codes over a factor ring R of length ` [10].

This paper delves into quasi-cyclic codes over Fq with an index of ` and a length
of `m. We note that `-quasi-cyclic codes over Fq of this length lm have permutation
automorphisms of order m without fixed points [14]. Han et al. [6] have explored
scenarios in which Xm − 1 decomposes into two distinct irreducible factors in Fq[X],
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demonstrating that the building-up construction can generate every `-quasi-cyclic self-
dual code of length `m over a finite field Fq. When Xm− 1 is split into three distinct
irreducible factors in Fq[X], Kim and Lee [9] differentiated two types of the ring R
based on the action of the conjugation map on the minimal ideals ofR, which led to the
discovery of optimal self-dual codes of lengths 68 and 70 under their construction [7].

This study extends previous research by investigating the generator matrices of all
`-quasi-cyclic self-dual codes over Fq with a length `m for each positive even integer
`, particularly when Xm − 1 contains exactly four irreducible factors in Fq[X] and
precisely two of these factors are self-reciprocal.

In this paper, we assume that Xm − 1 has exactly four distinct irreducible factors
in Fq[X] with exactly two of those factors being self-reciprocal, where the degree m is
a positive integer relatively prime to q.

This paper is structured as follows: Section 2 provides essential definitions, facts,
and notations required for this study. Section 3 explores the standard forms of gen-
erator matrices for linear codes over the ring R. Section 4 examines self-dual codes
over R of the second type and establishes the forms of generator matrices for self-
dual codes of lengths 2 and 4. All computations in this study are performed using
MAGMA [15].

2. Preliminaries

In this section, we introduce fundamental concepts related to quasi-cyclic self-dual
codes, referencing [10–12] for more comprehensive details.

Let R be a commutative ring with identity. A linear code C of length n over R is
an R-submodule of Rn. The free rank of a code C is the highest rank among all free
R-submodules contained within C. If a code C is a free R-submodule of Rn, then C
is called a free code. The standard shift operator on Rn is denoted by T . A linear
code C over R is called `-quasi-cyclic or quasi-cyclic of index ` if it remains invariant
under T `. We can easily show that if ` and the code length n are coprime, the code
C is permutation equivalent to a cyclic code. Therefore, throughout this study, we
assume that the code length n is equal to `m for some positive integer m.

Let Fq[X] be a polynomial ring, and R := Fq[X]/(Xm− 1). Let us assume that m
is coprime to the characteristic of Fq. In [10], it is proved that quasi-cyclic codes with
index ` and length `m over Fq have a one-to-one correspondence with linear codes
of length ` over R. The correspondence is given by the map φ, which we defined as
follows. Suppose that C be a quasi-cyclic code over Fq of length `m and index ` with
a codeword c denoted by

c = (c00, c01, . . . , c0l−1, c10, . . . , c1l−1, . . . , cm−10, . . . , cm−1l−1).

Let φ be a map φ : Fq
`m → R` defined by

φ(c) = (c0(X), c1(X), . . . , cl−1(X)) ∈ R`,

where

cj(X) =
m−1∑
i=0

cijX
i ∈ R, for j = 0, . . . , l − 1.

We denote by φ(C) the image of C under φ.
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The dual of C, denoted by C⊥, is defined with respect to an inner product over R.
A code C is called self-dual if C = C⊥.

We define a conjugation map − on R by X = X−1, where X−1 = Xm−1, and it is
an identity map on Fq. It is extended Fq-linearly. We also define the Hermitian inner

product on R` by 〈x,y〉 =
∑l−1

j=0 xjyj for x = (x0, . . . , x`−1) and y = (y0, . . . , y`−1).

For a,b ∈ F`m
q , 〈φ(a), φ(b)〉 = 0 if and only if T `k(a) · b = 0 for every 0 ≤ k ≤

m−1, where · denotes the Euclidean inner product [10]. It follows that φ(C)⊥ = φ(C⊥),
where φ(C)⊥ is the Hermitian dual of φ(C), and C⊥ is the Euclidean dual of C. In
particular, a quasi-cyclic code C over Fq is Euclidean self-dual if and only if a code
φ(C) over R is Hermitian self-dual [10]. Two linear codes over Fq (resp. R) are called
equivalent if there is a monomial map (resp. permutation map) such that it sends one
to another.

For a matrix Am×n, we define the matrix Am×n by the conjugation action of entries
of Am×n, that is, if A = (aij)m×n then A = (aij)m×n. We denote the transpose of
Am×n by A>m×n, that is, A>m×n = (aji)n×m.

3. Standard form

We use the following notations throughout this study. Let q be a power of prime.
We consider a factor ring R = Fq[X]/(Xm − 1) for a prime m. If Xm − 1 =
N0(X)N1(X)N2(X)N3(X) which is a product of four distinct irreducible factors in
Fq[X], where N0(X) = X − 1, then R ∼= I0 ⊕ I1 ⊕ I2 ⊕ I3, where Ii is the min-
imal ideal of R generated by Xm−1

Ni(X)
for i = 0, 1, 2, 3. We have Ii ∼= Fqti , where ti

is the degree of Ni(X) for i = 0, 1, 2, 3. Hence R ∼= Fqt0 ⊕ Fqt1 ⊕ Fqt2 ⊕ Fqt3 . The
unit group of a field F is denoted by F×. We define an isomorphsim Φ from R to
R := Fqt0 ⊕ Fqt1 ⊕ Fqt2 ⊕ Fqt3 by Φ(Li) = f0 where Li = Xm−1

Ni(X)
for i = 0, 1, 2, 3

and f0 = (e0, 0, 0, 0), f1 = (0, e1, 0, 0), f2 = (0, 0, e2, 0), f3 = (0, 0, 0, e3) for some
ei ∈ F×

qti
with i = 0, 1, 2, 3. We note that f−10 = (e−10 , 0, 0, 0), f−11 = (0, e−11 , 0, 0), f−12 =

(0, 0, e−12 , 0), f−13 = (0, 0, 0, e−13 ).
We note that I0 = I0. We define the type of the ring R = Fq[X]/(Xm − 1)

depending on how the conjugation map acts on Ii for i = 0, 1, 2, 3. We say that R is
of the first type, denoted by R1 if I i = Ii for i = 1, 2, 3, and it is of the second type,
denoted by R2 if I2 = I3. In the following theorem, we find a standard form of a
generator matrix of a linear code over R.

Theorem 3.1. We keep the notations given above. Let R = Fqt0 × Fqt1 × Fqt2 ×
Fqt3

∼= Fq[X]/(Xm − 1), where m is relatively prime to q and the factorization of
Xm − 1 over Fq has four distinct irreducible factors and ti is a positive integer for
i = 0, 1, 2, 3. Let f0 = (e0, 0, 0, 0), f1 = (0, e1, 0, 0), f2 = (0, 0, e2, 0), f3 = (0, 0, 0, e3),
where ei ∈ F×

qti
.

Then every linear code C over R of length ` has generator matrix (up to equivalence)
in the following form:

(1) G =


Ik0 A1 A2 A3 D0

O B1 M1 M2 D1

O O B2 M3 D2

O O O B3 D3

 ,
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where Ik0 is the identity matrix of degree k0, and
B1 = diag

(
(f0 + f1 + f2)Ik1,1 , (f0 + f1 + f3)Ik1,2 , (f0 + f2 + f3)Ik1,3 , (f1 + f2 + f3)Ik1,4

)
,

B2 = diag
(
(f0 + f1)Ik2,1 , (f0 + f2)Ik2,2 , (f0 + f3)Ik2,3 , (f1 + f2)Ik2,4 , (f1 + f3)Ik2,5 , (f2 + f3)Ik2,6

)
,

B3 = diag
(
f0Ik3,1 , f1Ik3,2 , f2Ik3,3 , f3Ik3,4

)
are diagonal matrices, and
A1 = [ f3Ak1,1

f2Ak1,2
f1Ak1,3

f0Ak1,4 ] ,
A2 = [ (f2 + f3)Ak2,1

(f1 + f3)Ak2,2
(f1 + f2)Ak2,3

, (f0 + f3)Ak2,4
(f0 + f2)Ak2,5

(f0 + f1)Ak2,6 ] ,
A3 = [ (f1 + f2 + f3)Ak3,1

(f0 + f2 + f3)Ak3,2
(f0 + f1 + f3)Ak3,3

(f0 + f1 + f2)Ak3,4 ] ,
where Aki,j is k0 × ki,j matrix over R, and

M1 =

 f2Mk1,1,k2,1
f1Mk1,1,k2,2

(f1 + f2)M ′
k1,1,k2,3

f0Mk1,1,k2,4
(f0 + f2)M ′

k1,1,k2,5
(f0 + f1)M ′

k1,1,k2,6

f3Mk1,2,k2,1
f3Mk1,2,k2,2

f1Mk1,2,k2,3
f3Mk1,2,k2,4

f0Mk1,2,k2,5
(f0 + f1)M ′

k1,2,k2,6

Ok1,3,k2,1
f3Mk1,3,k2,2

f2Mk1,3,k2,3
f3Mk1,3,k2,4

f2Mk1,3,k2,5
f0Mk1,3,k2,6

Ok1,4,k2,1
Ok1,4,k2,2

Ok1,4,k2,3
f3Mk1,4,k2,4

f2Mk1,4,k2,5
f1Mk1,4,k2,6

 ,
M2 =

 (f1 + f2)Mk1,1,k3,1
(f0 + f2)Mk1,1,k3,2

(f0 + f1)Mk1,1,k3,3
(f0 + f1 + f2)M ′

k1,1,k3,4

(f1 + f3)Mk1,2,k3,1
(f0 + f3)Mk1,2,k3,2

(f0 + f1 + f3)M ′′
k1,2,k3,3

(f0 + f1)Mk1,2,k3,4

(f2 + f3)Mk1,3,k3,1
(f0 + f2 + f3)M ′′′

k1,3,k3,2
(f0 + f3)Mk1,3,k3,3

(f0 + f2)Mk1,3,k3,4

(f1 + f2 + f3)M ′′′′
k1,4,k3,1

(f2 + f3)Mk1,4,k3,2
(f1 + f3)Mk1,4,k3,3

(f1 + f2)Mk1,4,k3,4

 ,

M3 =


f1Mk2,1,k3,1

f0Mk2,1,k3,2
(f0 + f1)M ′

k2,1,k3,3
(f0 + f1)M ′

k2,1,k3,4

f2Mk2,2,k3,1
f2Mk2,2,k3,2

f0Mk2,2,k3,3
(f0 + f2)M ′

k2,2,k3,4

f3Mk2,3,k3,1
f3Mk2,3,k3,2

f3Mk2,3,k3,3
f0Mk2,3,k3,4

Ok2,4,k3,1
f2Mk2,4,k3,2

f1Mk2,4,k3,3
(f1 + f2)M ′

k2,4,k3,4

Ok2,5,k3,1
f3Mk2,5,k3,2

f3Mk2,5,k3,3
f1Mk2,5,k3,4

Ok2,6,k3,1
Ok2,6,k3,2

f3Mk2,6,k3,3
f2Mk2,6,k3,4

,
where Mki,j ,ks,t is a ki,j × ks,t matrix over R, and M ′

ki,j ,ks,t
is a ki,j × ks,t matrix over R

such that for its entries, the components corresponding to the coefficient can’t consist
of all nonzero, and M ′′

ki,j ,ks,t
is a ki,j × ks,t matrix over R such that for its entries, the

components corresponding to f0 and f1 can’t consist of all nonzero, and M ′′′
ki,j ,ks,t

is
a ki,j × ks,t matrix over R such that for its entries, the component corresponding to
f0 is zero or the components corresponding to f2 and f3 are both zero, and M ′′′′

ki,j ,ks,t

is a ki,j × ks,t matrix over R such that for its entries, just one of the components
corresponding to f1, f2, and f3 is nonzero, and D0 is k0 × k4 matrix over R, and

D1 =

 D1,1

D1,2

D1,3

D1,4

, D2 =


D2,1

D2,2

D2,3

D2,4

D2,5

D2,6

, D3 =

 D3,1

D3,2

D3,3

D3,4


where Di,j is a ki,j × k4 matrix over R such that every non-zero entry of Di,j is
contained in the ideal 〈gi,j〉 of R, where gi,j is the coefficient of Iki,j in Bi.

In particular, this code C has free rank k0,its length ` is equal to k0 +
∑4

i=j k1,j +∑6
i=j k2,j +

∑4
i=j k3,j + k4, and its rank is equal to

(k0
∑3

i=0 ti + k1,1(t0 + t1 + t2) + k1,2(t0 + t1 + t3) + k1,3(t0 + t2 + t3) + k1,4(t1 + t2 + t3) +
k2,1(t0 + t1) + k2,2(t0 + t2) + k2,3(t0 + t3) + k2,4(t1 + t2) + k2,5(t1 + t3) + k2,6(t2 + t3) +

k3,1t0 + k3,2t1 + k3,3t2 + k3,4t3)/
(∑3

i=0 ti
)
.

Proof. We note that R is a commutative ring with unity 1R = (1, 1, 1, 1), zero
0R = (0, 0, 0, 0) and f0f1 = f0f2 = f0f3 = f1f2 = f1f3 = f2f3 = 0R. The unit group
R× of R is F×q × F×

qt1
× F×

qt2
× F×

qt3
.

Let G′ be a generator matrix for C. First, we note that there are four possible
cases for each row of G′. The first case is a row of G0 containing a unit of R.



Quasi-cyclic self-dual codes with four factors 489

The second case is that a row contains a nonzero element in 〈fi1 + fi2 + fi3〉 where
i1, i2, i3 = 0, 1, 2, 3. The third case is that a row contains a nonzero element in
〈fi1 + fi2〉 where i1, i2 = 0, 1, 2, 3. The last case is that a row contains a nonzero
element in 〈fi〉 where i = 0, 1, 2, 3.

We can transform G′ into G0 such that the first k0 rows (respectively, the first k0
columns) of G0 are equal to the first k0 (respectively, the first k0 columns) of G in (1)
by column permutations and elementary row operations; we may assume that k0 is
the total number of rows containing units. Deleting the first k0 rows and the first k0
columns of G0, we get G′0:

G0 =

 Ik0 · · ·
O

G′0
...
O

 .
We may assume that G′0 has no unit entries; otherwise, we can increase k0.

By column permutations and elementary row operations, we can transform G′0 into
G1 such that all entries of the first k1,1 rows and the first k1,1 columns of G1 belong to
〈f0 + f1 + f2〉. We claim that all the entries of the first k1,1 columns of G1 after the
k1,1th row are zeros by elementary row operations. In fact, the first k1,1 columns of G1

have no entry contained in 〈f3〉; otherwise, k0 is increased, which is a contradiction. If
the first k1,1 columns of G1 after the k1,1th row have an entry contained in 〈fi〉 where
i = 0, 1, 2, then it is easy to see that we can easily make them zeros by elementary
row operations.

By similar reasoning for the other cases, we can transform G′ in the following form:

G′′ =


Ik0 A′1 A′2 A′3 D′0
O B′1 M ′

1 M ′
2 D′1

O O B′2 M ′
3 D′2

O O O B′3 D′3

 .
Moreover, we can transform B′1 into B1 in (1) by elementary row operations.

B′1 =


(f0 + f1 + f2)Ik1,1 B1,1 B1,2 B1,3

O (f0 + f1 + f3)Ik1,2 B1,4 B1,5

O O (f0 + f2 + f3)Ik1,3 B1,6

O O O (f1 + f2 + f3)Ik1,4


We note that the matrix B1,1 has no entry contained in 〈f2〉; it is easy to see that

if B1,1 has no entry contained in 〈f2〉, then k0 is increased, which is a contradiction.
If B1,1 has no entry contained in 〈f2〉, then elementary row operations can transform
it into zeros. Analogously, matrix B1,i can be transformed into O by elementary
row operations for i = 2, 3, 4, 5, 6. Furthermore, A′1, A

′
2, A

′
3,M

′
1,M

′
2, and M ′

3 can be
transformed into the A1, A2, A3,M1,M2, and M3 in (1) by elementary row operations
without change of rank. Thus, we can transform G′′ into G in (1).

This code C has rank log|R| |C| = (k0
∑3

i=0 ti + k1,1(t0 + t1 + t2) + k1,2(t0 + t1 + t3) +
k1,3(t0 + t2 + t3) +k1,4(t1 + t2 + t3) +k2,1(t0 + t1) +k2,2(t0 + t2) +k2,3(t0 + t3) +k2,4(t1 +

t2) + k2,5(t1 + t3) + k2,6(t2 + t3) + k3,1t0 + k3,2t1 + k3,3t2 + k3,4t3)/
(∑3

i=0 ti
)

since |C| =
qk0

∑3
i=0 ti+k1,1

∑2
i=0 ti+k1,2

∑
i=0,1,3 ti+k1,3

∑
i=0,2,3 ti+k1,4

∑3
i=1 ti · qk2,1(t0+t1)+k2,2(t0+t2)+k2,3(t0+t3)·

qk2,4(t1+t2)+k2,5(t1+t3)+k2,6(t2+t3) · qk3,1t0+k3,2t1+k3,3t2+k3,4t3 .

In the following corollary, we find the standard form of generator matrices of linear
codes over the ring R, which follows from Theorem 3.1 using the map Φ−1.
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Corollary 3.2. LetR = Fq[X]/(Xm−1), where m is relatively prime to q and the
factorization ofXm−1 over Fq has four distinct irreducible factorsN0(X), N1(X), N2(X),
and N3(X). Let Li = Xm−1

Ni
for i = 0, 1, 2, 3. Then a linear code C over the ring R of

length ` has a generator matrix in the following form (up to equivalence):

(2)


Ik0 A1 A2 A3 D0

O B1 M1 M2 D1

O O B2 M3 D2

O O O B3 D3

 ,
where Ik0 is the identity matrix of degree k0, and
B1 = diag

(
N3Ik1,1 , N2Ik1,2 , N1Ik1,3 , N0Ik1,4

)
,

B2 = diag
(
(L0L1)Ik2,1 , (L0L2)Ik2,2 , (L0L3)Ik2,3 , (L1L2)Ik2,4 , (L1L3)Ik2,5 , (L2L3)Ik2,6

)
,

B3 = diag
(
L0Ik3,1 , L1Ik3,2 , L2Ik3,3 , L3Ik3,4

)
are diagonal matrices, and
A1 = [ L3Ak1,1

L2Ak1,2
L1Ak1,3

L0Ak1,4 ],
A2 = [ (L2L3)Ak2,1

(L1L3)Ak2,2
(L1L2)Ak2,3

(L0L3)Ak2,4
(L0L2)Ak2,5

(L0L1)Ak2,6 ],
A3 = [ N0Ak3,1

N1Ak3,2
N2Ak3,3

N3Ak3,4 ],
where Aki,j is k0 × ki,j matrix over R, and

M1 =

 L2Mk1,1,k2,1
L1Mk1,1,k2,2

(L1L2)M′
k1,1,k2,3

L0Mk1,1,k2,4
(L0L2)M′

k1,1,k2,5
(L0L1)M′

k1,1,k2,6

L3Mk1,2,k2,1
L3Mk1,2,k2,2

L1Mk1,2,k2,3
L3Mk1,2,k2,4

L0Mk1,2,k2,5
(L0L1)M′

k1,2,k2,6

Ok1,3,k2,1
L3Mk1,3,k2,2

L2Mk1,3,k2,3
L3Mk1,3,k2,4

L2Mk1,3,k2,5
L0Mk1,3,k2,6

Ok1,4,k2,1
Ok1,4,k2,2

Ok1,4,k2,3
L3Mk1,4,k2,4

L2Mk1,4,k2,5
L1Mk1,4,k2,6

,
M2 =

 (L1L2)Mk1,1,k3,1
(L0L2)Mk1,1,k3,2

(L0L1)Mk1,1,k3,3
N3M′

k1,1,k3,4

(L1L3)Mk1,2,k3,1
(L0L3)Mk1,2,k3,2

N2M′′
k1,2,k3,3

(L0L1)Mk1,2,k3,4

(L2L3)Mk1,3,k3,1
N1M′′′

k1,3,k3,2
(L0L3)Mk1,3,k3,3

(L0L2)Mk1,3,k3,4

N0M′′′′
k1,4,k3,1

(L2L3)Mk1,4,k3,2
(L1L3)Mk1,4,k3,3

(L1L2)Mk1,4,k3,4

,

M3 =


L1Mk2,1,k3,1

L0Mk2,1,k3,2
(L0L1)M′

k2,1,k3,3
(L0L1)M′

k2,1,k3,4

L2Mk2,2,k3,1
L2Mk2,2,k3,2

L0Mk2,2,k3,3
(L0L2)M′

k2,2,k3,4

L3Mk2,3,k3,1
L3Mk2,3,k3,2

L3Mk2,3,k3,3
L0Mk2,3,k3,4

Ok2,4,k3,1
L2Mk2,4,k3,2

L1Mk2,4,k3,3
(L1L2)M′

k2,4,k3,4

Ok2,5,k3,1
L3Mk2,5,k3,2

L3Mk2,5,k3,3
L1Mk2,5,k3,4

Ok2,6,k3,1
Ok2,6,k3,2

L3Mk2,6,k3,3
 L2Mk2,6,k3,4

,
whereMki,j ,ks,t is a ki,j×ks,t matrix over R, andM′

ki,j ,ks,t
is a ki,j×ks,t matrix over R

such that for its entries, the components corresponding to the coefficient can’t consist
of all nonzero, andM′′

ki,j ,ks,t
is a ki,j × ks,t matrix over R such that for its entries, the

components corresponding to L0 and L1 can’t consist of all nonzero, and M′′′
ki,j ,ks,t

is
a ki,j × ks,t matrix over R such that for its entries, the component corresponding to
L0 is zero or the components corresponding to L2 and L3 are both zero, andM′′′′

ki,j ,ks,t

is a ki,j × ks,t matrix over R such that for its entries, just one of the components
corresponding to L1, L2, and L3 is nonzero, D0 is k0 × k4 matrix over R,

D1 =

 D1,1

D1,2

D1,3

D1,4

,D2 =


D2,1

D2,2

D2,3

D2,4

D2,5

D2,6

,D3 =

 D3,1

D3,2

D3,3

D3,4

,
where Di,j is a ki,j × k4 matrix over R such that every non-zero entry of Di,j is
contained in the ideal 〈gi,j〉 of R, where gi,j is the coefficient of Iki,j in Bi.
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4. Hermitian self-dual codes over R

We next study Hermitian self-dual codes over R to find conditions for a linear code
over R to be Hermitian self-dual in terms of its generator matrix in the standard
form.

Theorem 4.1. Let q be a power of prime and let R have the second type, where
m is relatively prime to q, and the factorization of Xm − 1 over Fq has four distinct
irreducible factors. Then every self-dual code over Φ(R) with generator matrix of the
form (1) satisfies that k0 = k4, k1,1 = k3,3, k1,2 = k3,4, k1,3 = k3,2, k1,4 = k3,1, k2,1 =
k2,6, k2,2 = k2,4, k2,3 = k2,5.

Proof. We suppose that R is of the second type, which means that the conjugation
map permutes I2 and I3 as I2 = I3, I3 = I2, whereas I0 = I0, I1 = I1. In this
case, we choose elements e2 := e3 and e3 := e2. Firstly, we define the matrix G∗ over
Φ(R) = R as follows:

(3) G∗ =


−Ã>1 B∗3 O O O

−Ã>2 −M>
1 B∗2 O O

−Ã>3 −M>
2 −M>

3 B∗1 O

−D>0 −D>1 −D>2 −D>3 Ik4


with
B∗1 = diag

(
(f1 + f2 + f3)Ik3,1 , (f0 + f2 + f3)Ik3,2 , (f0 + f1 + f2)Ik3,3 , (f0 + f1 + f3)Ik3,4

)
,

B∗2 = diag
(
(f2 + f3)Ik2,1 , (f1 + f2)Ik2,2 , (f1 + f3)Ik2,3 , (f0 + f2)Ik2,4 , (f0 + f3)Ik2,5 , (f0 + f1)Ik2,6

)
,

B∗3 = diag
(
f2Ik1,1 , f3Ik1,2 , f1Ik1,3 , f0Ik1,4

)
,

Ã1 =
[
f2
2Ak1,1 , f

2
3Ak1,2 , f

2
1Ak1,3 , f

2
0Ak1,4

]
,

Ã2 =
[
(f2

2 + f2
3 )Ak2,1 , (f

2
1 + f2

2 )Ak2,2 , (f
2
1 + f2

3 )Ak2,3 , (f
2
0 + f2

2 )Ak2,4 , (f
2
0 + f2

3 )Ak2,5 , (f
2
0 + f2

1 )Ak2,6

]
,

Ã3 =
[
(f2

1 + f2
2 + f2

3 )Ak3,1 , (f
2
0 + f2

2 + f2
3 )Ak3,2 , (f

2
0 + f2

1 + f2
2 )Ak3,3 , (f

2
0 + f2

1 + f2
3 )Ak3,4

]
,

where Aki,j is defined in (1) for i = 1, 2, 3, j = 0, 1, 2, 3, and Mi and Dj are defined in (1)

for i = 1, 2, 3 and j = 0, 1, 2, 3.

Let C∗ be a code generated by G∗. Then we claim that C∗ ⊂ C⊥ by showing

GG∗
>

= O. Considering the computation of GG∗
>

, it is enough to show that the
product of each block matrix of G∗ with all the other block matrices of G is zero.
Since

M
>
1 =



f3M
>
k1,1,k2,1

f2M
>
k1,2,k2,1

O>
k1,3,k2,1

O>
k1,4,k2,1

f1M
>
k1,1,k2,2

f2M
>
k1,2,k2,2

f2M
>
k1,3,k2,2

O>
k1,4,k2,2

(f1 + f3)M ′>
k1,1,k2,3

f1M
>
k1,2,k2,3

f3M
>
k1,3,k2,3

O>
k1,4,k2,3

f0M
>
k1,1,k2,4

f2M
>
k1,2,k2,4

f2M
>
k1,3,k2,4

f2M
>
k1,4,k2,4

(f0 + f3)M ′>
k1,1,k2,5

f0M
>
k1,2,k2,5

f3M
>
k1,3,k2,5

f3M
>
k1,4,k2,5

(f0 + f1)M ′>
k1,1,k2,6

(f0 + f1)M ′>
k1,2,k2,6

f0M
>
k1,3,k2,6

f1M
>
k1,4,k2,6

,

M
>
2 =


(f1 + f3)M

>
k1,1,k3,1

(f1 + f2)M
>
k1,2,k3,1

(f2 + f3)M
>
k1,3,k3,1

(f1 + f2 + f3)M ′′′′>
k1,4,k3,1

(f0 + f3)M
>
k1,1,k3,2

(f0 + f2)M
>
k1,2,k3,2

(f0 + f2 + f3)M ′′′>
k1,3,k3,2

(f2 + f3)M
>
k1,4,k3,2

(f0 + f1)M
>
k1,1,k3,3

(f0 + f1 + f2)M ′′>
k1,2,k3,3

(f0 + f2)M
>
k1,3,k3,3

(f1 + f2)M
>
k1,4,k3,3

(f0 + f1 + f3)M ′>
k1,1,k3,4

(f0 + f1)M
>
k1,2,k3,4

(f0 + f3)M
>
k1,3,k3,4

(f1 + f3)M
>
k1,4,k3,4

,

M
>
3 =


f1M

>
k2,1,k3,1

f3M
>
k2,2,k3,1

f2M
>
k2,3,k3,1

O>
k2,4,k3,1

O>
k2,5,k3,1

O>
k2,6,k3,1

f0M
>
k2,1,k3,2

f3M
>
k2,2,k3,2

f2M
>
k2,3,k3,2

f3M
>
k2,4,k3,2

f2M
>
k2,5,k3,2

O>
k2,6,k3,2

(f0 + f1)M ′>
k2,1,k3,3

f0M
>
k2,2,k3,3

f2M
>
k2,3,k3,3

f1M
>
k2,4,k3,3

f2M
>
k2,5,k3,3

f2M
>
k2,6,k3,3

(f0 + f1)M ′>
k2,1,k3,4

(f0 + f3)M ′>
k2,2,k3,4

f0M
>
k2,3,k3,4

(f1 + f3)M ′>
k2,4,k3,4

f1M
>
k2,5,k3,4

f3M
>
k2,6,k3,4

 ,
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where Mki,j ,ks,t are defined in (1), it is routine to check that GG∗
>

= O by direct com-
putations of block matrices.

The fact that GG∗
>

= O implies C∗ ⊂ C⊥ = C. Comparing each rank of the
generator matrix of C of the form (1) and the generator matrix of C∗ of the form
(3), we conclude that k1,1 = k3,3, k1,2 = k3,4, k1,3 = k3,2, k1,4 = k3,1, k2,1 = k2,6, k2,2 =
k2,4, k2,3 = k2,5. The free rank of C∗ is less than or equal to the free rank of C. Since
|C| = |R|l/2, it follows that k0 = k4. Therefore, we conclude that the code C∗ generated
by G∗ is the Hermian dual of C, and the theorem follows.

We explicitly determine the forms of generator matrices of all self-dual codes over
Φ(R) of length ≤ 4.

Proposition 4.2. Let q be a power of 2 or a power of an odd prime with q ≡ 1 (
mod 4). Let R = Fq[X]/(Xm − 1) be a ring of the second type. Every self-dual code
C over Φ(R) of length two is equivalent to a code with a generator matrix of one of
the following cases:

i) G =
[
1 a

]
, where aa = −1,

ii) G =

[
f0 + f1 + fi αf0 + βf1

0 fi

]
for i = 2 or 3, where α ∈ Fqt0 and β ∈ Fqt1 such

that αα = ββ = −1

Proof. i) It is straightforward by the definition of self-dual codes over Φ(R).

ii) If C is of free rank zero, then C has a generator matrix of the form G =

[
a1 a2
0 a3

]
,

up to equivalence. Since C is self-dual, we have a3 = fi, where i = 2, 3. By
Theorems 3.1 and 4.1, we have that a1 = f0 + f1 + fi and a2 = αf0 + βf1.

Proposition 4.3. Let q be a power of an even prime or odd prime with q ≡ 1
(mod 4). Let R = Fq[X]/(Xm− 1) be a ring of the second type. Every self-dual code
C over Φ(R) of length two is equivalent to a code with a generator matrix of one of
the following cases:

i) G =

[
1 0 a1 a2
0 1 a3 a4

]
, where a1a1+a2a2 = −1, a3a3+a4a4 = −1, and a1a3+a2a4 =

0.

ii) G =

1 b1 b2 b3
0 b4 b5 b6
0 0 b7 b8

, where the values of b4 and b7 determine one of the following

seven sub-cases (here, the coefficients αi, βi, γi, and δi for all i are elements in
Fqt0 ,Fqt1 ,Fqt2 , and Fqt3 , respectively.) :

ii-1) b4 = f0 + f1 + f2 and b7 = f2. In this case,
b1 = δ1f3,
b2 = α1f0 + β1f1 + δ2f3,
b3 = α2f0 + β2f1 + γ1f2 + δ3f3,
b5 = α3f0 + β3f1,
b6 = α4f0 + β4f1 + γ2f2,
b8 = γ3f2
with α1α1 +α2α2 = β1β1 +β2β2 = γ1δ3 = −1, α1α3 +α2α4 = β1β3 +β2β4 =
δ1 + δ3γ2 = 0, α3α3 + α4α4 = −1, β3β3 + β4β4 = −1, δ2 + δ3γ3 = 0.
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ii-2) b4 = f0 + f1 + f3 and b7 = f3. In this case,
b1 = γ1f2,
b2 = α1f0 + β1f1 + γ2f2,
b3 = α2f0 + β2f1 + γ3f2 + δ1f3,
b5 = α3f0 + β3f1,
b6 = α4f0 + β4f1 + δ2f3,
b8 = δ3f3 with γ2 + γ3δ3,
with α1α1 +α2α2 = β1β1 +β2β2 = γ3δ1 = −1, α1α3 +α2α4 = β1β3 +β2β4 =
γ1 + γ3δ2 = 0, α3α3 + α4α4 = −1, β3β3 + β4β4 = −1.

ii-3) b4 = f0 + f2 + f3 and b7 = f1. In this case,
b1 = β1f1,
b2 = α1f0 + γ1f2 + δ1f3,
b3 = α2f0 + γ2f2 + δ2f3,
b6 = α3f0 + γ3f2 + δ3f3,
b8 = β2f1, with α1α1 + α2α2 = β1β1 = γ1δ1 + γ2δ2 = −1, β2β2 = −1,
either b5 = α4f0 with α4α4+α3α3 = γ3δ3 = −1, α1α4+α2α3 = γ2δ3 = δ2γ3 =
0, or b5 = γ4f2 + δ4f3 with α3α3 = γ3δ3 + γ4δ4 = −1, α2α3 = γ1δ4 + γ2δ3 =
δ1γ4 + δ2γ3 = 0.

ii-4) b4 = f1 + f2 + f3 and b7 = f0. In this case,
b8 = α1f0,
b1 = α2f0,
b2 = β1f1 + γ1f2 + δ1f3,
b3 = β2f1 + γ2f2 + δ2f3,
b6 = β3f1 + γ3f2 + δ3f3 with α1α1 = −1α2α2 = β1β1 + β2β2 = γ1δ1 = −1,
if b5 = β4f1 then γ2 = δ2 = 0, β4β4 + β3β3 = γ3δ3 = −1, β1β4 + β2β3 = 0,
if b5 = γ4f2 then γ2 = 0, β3β3 = γ3δ3 = −1, δ1γ4 + δ2γ3 = 0,
if b5 = δ4f3 then δ2 = 0, β3β3 = γ3δ3 = −1, γ1δ4 + γ2δ3 = 0.

ii-5) b4 = f0 + f1 and b7 = f2 + f3. In this case,
b1 = γ1f2 + δ1f3,
b2 = α1f0 + β1f1,
b3 = α2f0 + β2f1 + γ2f2 + δ2f3,
b5 = 0,
b6 = α3f0 + β3f1,
b8 = γ3f2 + δ3f3 with with α1α1 + α2α2 = β1β1 + β2β2 = γ1δ1 + γ2δ2 = −1,
α3α3 = β3β3 = −1, α2α3 = β2β3 = 0, γ3δ3 = −1, γ2δ3 = δ2γ3 = 0.

ii-6) b4 = f0 + f2 and b7 = f1 + f2. In this case,
b1 = β1f1 + δ1f3,
b2 = α1f0 + δ2f3,
b3 = α2f0 + β2f1 + γ1f2 + δ3f3,
b5 = 0,
b6 = α3f0 + γ2f2,
b8 = β3f1 + γ3f2 with α1α1 + α2α2 = β1β1 + β2β2 = γ1δ3 = −1, α3α3 =
−1, δ1 + δ3γ2 = 0, β3β3 = −1, δ2 + δ3γ3 = 0.

ii-7) b4 = f0 + f3 and b7 = f1 + f3. In this case,
b1 = β1f1 + γ1f2,
b2 = α1f0 + γ2f2,
b3 = α2f0 + β2f1 + γ3f2 + δ1f3,
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b5 = 0,
b6 = α3f0 + δ2f3,
b8 = β3f1 + δ3f3 with α1α1 + α2α2 = β1β1 + β2β2 = γ3δ1 = −1, α3α3 =
−1, γ1 + γ3δ2 = 0, β3β3 = −1, γ2 + γ3δ3 = 0.

iii) G =


h1 h2 h3 h4
0 h5 h6 h7
0 0 h8 h9
0 0 0 h10

, where the values of h1, h5, h8 and h10 determine one of

the following seven sub-cases(here, the coefficients αi, βi, γi, and δi for all i are
elements in Fqt0 ,Fqt1 ,Fqt2 , and Fqt3 , respectively.):

iii-1) h1 = f0 + f1 + f2, h5 = f0 + f1 + f2, h8 = f2, h10 = f2. In this case,
h2 = 0,
h3 = α1f0 + β1f1,
h4 = α2f0 + β2f1,
h6 = α3f0 + β3f1,
h7 = α4f0 + β4f1,
h9 = 0 with α1α1 + α2α2 = −1, β1β1 + β2β2 = −1, α1α3 + α2α4 = 0, β1β3 +
β2β4 = 0, α3α3 + α4α4 = −1, β3β3 + β4β4 = −1.

iii-2) h1 = f0 + f1 + f2, h5 = f0 + f1 + f3, h8 = f2, h10 = f3. In this case,
h2 = 0,
h3 = α1f0 + β1f1,
h7 = α4f0 + β4f1,
h9 = 0,
if h4 = α2f0 and h6 = α3f0 then α1α1+α2α2 = −1, β1β1 = −1, α1α3+α2α4 =
0, α3α3 + α4α4 = −1, β4β4 = −1,
if h4 = β2f1 and h6 = β3f1 then α1α1 = −1, β1β1+β2β2 = −1, β1β3+β2β4 =
0, α4α4 = −1, β3β3 + β4β4 = −1.

iii-3) h1 = f0 + f1 + f2, h5 = f0 + f2, h8 = f1 + f2, h10 = f2. In this case,
h2 = β1f1,
h3 = α1f0,
h4 = 0,
h6 = 0,
h7 = α2f0,
h9 = β2f1 with β1β1 = −α1α1 = α2α2 = β2β2 = −1.

iii-4) h1 = f0 + f1 + f3, h5 = f0 + f1 + f3, h8 = f3, h10 = f3. In this case,
h2 = 0,
h3 = α1f0 + β1f1,
h4 = α2f0 + β2f1,
h6 = α3f0 + β3f1,
h7 = α4f0 + β4f1,
h9 = 0 with α1α1 + α2α2 = −1, β1β1 + β2β2 = −1, α1α3 + α2α4 = 0, β1β3 +
β2β4 = 0, α3α3 + α4α4 = −1, β3β3 + β4β4 = −1.

iii-5) h1 = f0 + f1 + f3, h5 = f0 + f3, h8 = f1 + f3, h10 = f3. In this case,
h2 = β1f1,
h3 = α1f0,
h4 = 0,
h6 = 0,
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h7 = α2f0,
h9 = β2f1 with β1β1 = α1α1 = α2α2 = β2β2 = −1.

iii-6) h1 = f0 + f2 + f3, h5 = f0 + f2 + f3, h8 = f1, h10 = f1. In this case,
h2 = 0,
h3 = α1f0,
h4 = γ1f2 + δ1f3,
h6 = γ2f2 + δ2f3,
h7 = α2f0,
h9 = 0 with α1α1 = γ1δ1 = γ2δ2 = α2α2 = −1.

iii-7) h1 = f0 + f2 + f3, h5 = f1 + f2 + f3, h8 = f0, h10 = f1. In this case,
h2 = 0,
h3 = γ1f2 + δ1f3,
h4 = α1f0,
h6 = β1f1,
h7 = γ2f2 + δ2f3,
h9 = 0 with γ1δ1 = α1α1 = β1β1 = γ2δ2 = −1.

Proof. It is straightforward, as evident from Theorems 3.1 and 4.1.
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