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FIXED POINT IN BANACH *-ALGEBRAS WITH AN

APPLICATION TO FUNCTIONAL INTEGRAL EQUATION OF

FRACTIONAL ORDER

Goutam Das∗ and Nilakshi Goswami

Abstract. In this paper, we investigate the solvability of an operator equation
involving four operators in the setting of Banach *-algebras using Schauder’s fixed
point theorem. Moreover, we have given an application of our result to the following
functional integral equation of fractional order:

ξ(t) = g(t, ξ(ψ1(t)))Iαf1(t, Iβu(t, ξ(ψ2(t)))) + h(t, ξ(ψ3(t)))Iγf2(t, Iδv(t, ξ∗(ψ4(t))))

for proving the existence as well as the uniqueness of the solution in Banach *-
algebras under some generalized conditions.

1. Introduction

Topological fixed point theorems, including the Schauder fixed point principle,
the Leray-Schauder nonlinear alternative, and the topological transversality princi-
ple, serve as powerful tools in analyzing nonlinear differential and integral equations.
These theorems are instrumental in establishing the existence of solutions under spe-
cific compactness conditions, thereby providing crucial insights into the behaviour
of nonlinear systems. Fixed point theorems in Banach algebras was introduced by
Dhage [7] in 1988. After that several researchers (refer to [1], [19], [33]) have devel-
oped different important findings in this field. The term D-Lipschitzian was defined
by Dhage [8] in 2003 by generalizing the concept of Lipschitzian mappings. In 2012,
Pathak et al. [28] defined the concept of P-Lipschitzian mappings and established
some fixed point results with examples. Similar type of fixed point results are done
by Dhage and many other researchers including two operators as well as three opera-
tors (refer to [5], [12], [14], [18]).

In recent years, there has been a rise in interest among researcher to explore qua-
dratic functional integral equations, marking this field as one of the most dynamic
areas within integral equations and functional integral equations. Numerous interest-
ing existence results have emerged, showing the significance of this research domain.
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For an overview of some of the latest findings in integral equations as well as fixed
point theory, we refer to [2,3,15–17,21,22,24–27,29,31,32] and the references therein.

Motivated by these findings, in this paper, we have derived a fixed point result
in Banach *-algebra involving four operators with some generalized conditions. As
an application of this result, we have given an existence and uniqueness result of the
solution to the following nonlinear quadratic functional integral equation of fractional
order:

ξ(t) = g(t, ξ(ψ1(t)))Iαf1(t, Iβu(t, ξ(ψ2(t)))) + h(t, ξ(ψ3(t)))Iγf2(t, Iδv(t, ξ∗(ψ4(t)))),

(1)

where α, β, γ, δ ∈ (0, 1) with g, h : [0, T ] × R → R \ {0}, f1, f2, u, v : [0, T ] × R → R
and ψ1, ψ2, ψ3, ψ4 : [0, T ]→ [0, T ].

2. Preliminaries

In this section, we present the basic definitions and required results for our paper.

Definition 2.1. [20] The Riemann-Liouville fractional integral of the function
f ∈ L1(J) of order α ∈ R+ is defined by

Iαx f(t) =

∫ t

x

(t− s)α−1

Γ(α)
f(s)ds,

where x, t ∈ J , Γ(.) is Euler’s gamma function, L1(J) is the class of Lebesgue inte-
grable functions on the interval J = [0, T ].

Definition 2.2. [4] In an algebra A, for x, x∗ ∈ A, an involution is a self mapping
on A with x→ x∗ such that

(i) (x+ y)∗ = x∗ + y∗,
(ii) (x∗)∗ = x,
(iii) (xy)∗ = y∗x∗,
(iv) (αx∗) = ᾱx∗

for all x, y ∈ A and for all scalars α, where x∗ is called the adjoint of x.

An algebra A with an involution is called a *-algebra. A Banach *-algebra is a
Banach algebra A with an involution ‘*’ defined on it.

Example 2.3. [4] Let A be the algebra of all n × n complex matrices and let
a = (aij) ∈ A. Then A is a Banach *-algebra, where a∗ = (aji).

Definition 2.4. [8] A mapping T on a Banach space X is called D-Lipschitzian
if there exists a continuous and non-decreasing function φ : R+ ∪ {0} → R+ ∪ {0}
such that

||Tξ − Tη|| ≤ φ(||ξ − η||),
for all ξ, η ∈ X, where φ(0) = 0.

The function φ is called a D-function of T on X. It is clear that every Lipschitzian
mapping is D-Lipschitzian, but the converse is not always true.
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Definition 2.5. [28] A mapping T on a Banach space X is called a P-Lipschitzian
if there exists a non-decreasing function φ : R+ → R+ such that

||Tξ − Tη|| ≤ φ(||ξ − η||),
for all ξ, η ∈ X.
The function φ is also called a P-function of T on X. Every D-Lipschitzian mapping
is a P-Lipschitzian mapping, but the converse is not true.

Example 2.6. [28] Consider X = R. Let the mapping T : X → X be defined by

T (ξ) =

{
sin ξ, ξ ≥ 0,

1
1+|ξ| , ξ < 0

and φ : R+ ∪ {0} → R+ ∪ {0} be defined by

φ(t) =

{
et, t > 0,

2, t = 0.

Here, T is a P-Lipschitzian mapping, but not D-Lipschitzian.

For a Banach space X, an operator T : X → X is called a compact operator if
T (X) is a compact subset of X. Again, T is called totally bounded if for any bounded
subset Y of X, T (Y ) is a totally bounded set of X. T is called completely continuous
if it is continuous as well as totally bounded. A compact operator is totally bounded.
However, the converse holds for bounded subsets of X.

Theorem 2.7. (Schauder’s fixed point theorem, [30]) Let X be a Banach space
over K (K = R or C) and ∆ is a non-empty closed, convex and bounded subset of X.
Then any compact operator T : ∆→ ∆ has atleast one fixed point.

3. Main Results

Extending the results of Dhage [9] and Pathak et al. [28], we obtain the following
fixed point results involving four operators in the setting of Banach *-algebras.

Theorem 3.1. Let ∆ be a closed, convex and bounded subset of a Banach *-
algebra X such that if ξ ∈ ∆, then ξ∗ ∈ ∆. Let P,R : X → X, Q,S : ∆→ X be four
operators such that
(i) P and R are P-Lipschitzians with P-functions φP and φR respectively,
(ii) Q,S are completely continuous,
(iii) MφP (r) +NφR(r) < r, r > 0 where M = ||Q(∆)|| and N = ||S(∆)||,
(iv) ||Sξ∗ − Sξ∗k|| ≤ ||Qξ −Qξk|| for every ξ, ξk ∈ ∆,
(v) ξ = PξQη +RξSη∗ =⇒ ξ ∈ ∆ for all η ∈ ∆.
Then the operator equation ξ = PξQξ +RξSξ∗ has a solution.

Proof. Let η ∈ ∆ and define a mapping Pη : X → X by

Pη(ξ) = PξQη +RξSη∗, ξ ∈ X.
Now for ξ1, ξ2 ∈ X,

||Pη(ξ1)− Pη(ξ2)|| ≤ ||Pξ1 − Pξ2|| ||Qη||+ ||Rξ1 −Rξ2|| ||Sη∗||
≤MφP (||ξ1 − ξ2||) +NφR(||ξ1 − ξ2||) < ||ξ1 − ξ2||.
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By hypothesis (iii), Pη is a contraction on X and so, there exists a unique fixed point
z ∈ X such that

Pη(z) = z,

i.e., PzQη +RzSη∗ = z.

By (v) we have z ∈ ∆.
We define a mapping Ω : ∆→ X such that

Ωη = w,

where w ∈ X is the unique solution of the equation:

w = PwQη +RwSη∗, η ∈ ∆.

We consider a sequence {ηn} in ∆ converging to a point η. Since ∆ is closed, η ∈ ∆.
Now,

||Ωηn − Ωη|| ≤ ||PΩηnQηn − PΩηQη||+ ||RΩηnSη
∗
n −RΩηSη∗||

≤ ||PΩηnQηn − PΩηQηn||+ ||PΩηQηn − PΩηQη||
+ ||RΩηnSη

∗
n −RΩηSη∗n||+ ||RΩηSη∗n −RΩηSη∗||

≤ ||PΩηn − PΩη|| ||Qηn||+ ||PΩη|| ||Qηn −Qη||
+ ||RΩηn −RΩη|| ||Sη∗n||+ ||RΩη|| ||Sη∗n − Sη∗||.

Since, MφP (r) +NφR(r) < r, r > 0, there exists λ ∈ (0, 1) such that

MφP (r) +NφR(r) = λr.

Then the above inequality becomes

||Ωηn − Ωη|| ≤ λ||Ωηn − Ωη||+ ||PΩη|| ||Qηn −Qη||+ ||RΩη|| ||Sη∗n − Sη∗||.
Taking limit superior as n→∞ on both sides of the above inequality we get,

lim
n→∞

sup ||Ωηn − Ωη|| = 0.

This shows that Ω is continuous on ∆. Now we show that P,R are compact operators
on ∆. For any w ∈ ∆ we have

||Pw|| ≤ ||Pa||+ ||Pw − Pa||
≤ ||Pa||+ α||w − a||
≤ c1,

where c1 = ||Pa|| + α diam(∆) for some fixed a ∈ ∆ and diam(∆) = sup{||ξ − η|| :
ξ, η ∈ ∆}.
Similarly, ‖|Rw|| ≤ c2 where c2 = ||Rb||+ diam(∆) for some fixed b ∈ ∆.
Since, Q is completely continuous, Q(∆) is totally bounded. Then there exists a set
Y = {η1, η2, ..., ηn} in ∆ such that

Q(∆) ⊂
n⋃
i=1

Bδ(xi),

where xi = Q(ηi), δ = (1−(αM+βN)
c1+c2

)ε and Bδ(xi) is an open ball in X centered at xi
of radius δ. Hence, for any η ∈ ∆ we have an ηk ∈ Y such that

||Qη −Qηk|| <
(

1− (αM + βN)

c1 + c2

)
ε.
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Now,

||Ωη − Ωηk|| ≤ ||PwQη − PwkQηk||+ ||RwSη∗ −RwkSη∗k||
≤ ||PwQη − PwkQη||+ ||PwkQη − PwkQηk||
+ ||RwSη∗ −RwkSη∗||+ ||RwkSη∗ −RwkSη∗k||
≤ ||Pw − Pwk|| ||Qη||+ ||Pwk|| ||Qη −Qηk||
+ ||Rw −Rwk|| ||Sη∗||+ ||Rwk|| ||Sη∗ − Sη∗k||
≤ (αM + βN)||w − wk||+ (c1 + c2)||Qη −Qηk||

≤ c1 + c2

1− (αM + βN)
||Qη −Qηk||

< ε.

This is true for every η ∈ ∆ and so

Ω(∆) ⊂
n⋃
i=1

Bε(wi),

where wi = Ω(ηi). Hence, Ω(∆) is totally bounded. Since Ω is continuous, it is a
compact operator on ∆. Now applying the Schauder’s fixed point theorem, Ω has a
fixed point in ∆.Then

ξ = Ωξ = P (Ωξ)Qξ +R(Ωξ)Sξ∗ = PξQξ +RξSξ∗,

and so, the operator equation ξ = PξQξ +RξSξ∗ has a solution in ∆.

Remark 3.2. Taking P as a D-Lipschitzian mapping and R = S = O (zero
operator), our result reduces to the Theorem 2.1 of [10], in the setting of Banach
algebra. Again, considering X as a unital Banach algebra with unit element e, and
S(ξ) = e for all ξ ∈ ∆, we get Theorem 4.1 of [28].

Theorem 3.3. Let ∆ be a closed, convex and bounded subset of a Banach *-
algebra X such that if ξ ∈ ∆, then ξ∗ ∈ ∆. Let P,R : X → X and Q,S : ∆→ X be
four operators satisfying
(i) P and R are P-Lipschitzians with P-functions φP and φR respectively,

(ii)
(

I
P+R

)−1

exists on Q(∆), where I is the identity operator on X,

(iii) Q,S are completely continuous, and
(iv) MφP (r) +NφR(r) < r, r > 0 where M = ||Q(∆)|| and N = ||S(∆)||.
(v) Qξ = Sξ∗ for any ξ ∈ ∆.
Then the operator equation PξQξ +RξSξ∗ = ξ has a solution in ∆.

Proof. Define an operator T : ∆→ X by

T =
( I

P +R

)−1

Q,

Since by (ii),
(

I
P+R

)−1

exists on Q(∆), the composition
(

I
P+R

)−1

Q exists on ∆.

Now, we show that

Q(∆) ⊆
( I

P +R

)
(X).

Let η ∈ ∆ be fixed and define an operator Pη on X by

Pη(ξ) = PξQη +RξSη∗, ξ ∈ X.
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As in Theorem 3.1, Pη is a contraction on X and so, there exists a unique fixed point
z in X such that

z = PzQη +RzSη∗.

Using (v), we get,

z = (Pz +Rz)Qη

i.e., Qη =
( I

P +R

)
z.

Thus, the operator T is well defined.

Now, we show that
(

I
P+R

)−1

is continuous on Q(∆). Let {ξn} be a sequence in Q(∆)

with ξn → ξ as n→∞.
For each n, we take( I

P +R

)−1

(ξn) = ηn =⇒ ξnPηn + ξnRηn = ηn.

Let ( I

P +R

)−1

(ξ) = η =⇒ ξPη + ξRη = η.

Now,

||ηn − η|| = ||ξnPηn + ξnRηn − ξPη − ξRη||
≤ ||ξnPηn − ξPη||+ ||ξnRηn − ξRη||
≤ ||ξnPηn − ξnPη||+ ||ξnPη − ξPη||+ ||ξnRηn − ξnRη||+ ||ξnRη − ξRη||
≤ ||ξn|| ||Pηn − Pη||+ ||Pη|| ||ξn − ξ||+ ||ξn|| ||Rηn −Rη||+ ||Rη|| ||ξn − ξ||
≤MφP (||ηn − η||) + ||Pη|| ||ξn − ξ||+NφR(||ηn − η||) + ||Rη|| ||ξn − ξ||.

Hence

lim sup
n
||ηn − η|| ≤MφP (lim sup

n
||ηn − η||) +NφR(lim sup

n
||ηn − η||).

If lim sup
n
||ηn−η|| > 0, we get a contradiction to (iv). Therefore, lim sup

n
||ηn−η|| = 0

and so,

lim
n
||
( I

P +R

)−1

(ξn)−
( I

P +R

)−1

(ξ)|| = lim
n
||ηn − η|| = 0.

Hence the operator
(

I
P+R

)−1

is continuous on Q(∆). Since T is a composition of

continuous and a completely continuous operator, so it is completely continuous on
∆. Hence by Schauder’s fixed point theorem we get the solution.

4. Application

In this section, we show the existence of solution of the functional integral equation
of fractional order given by (1). For this, we consider the following conditions:

(C1) The functions g, h : [0, T ] × R → R \ {0} are continuous and there exist two
positive functions L(t) and K(t) with norms ||L|| and ||K|| respectively, such that

|g(t, x)− g(t, y)| ≤ L(t)|x− y| and |h(t, x)− h(t, y)| ≤ K(t)|x− y|
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for all t ∈ [0, T ] and x, y ∈ R.
(C2) The functions f1, f2, u, v : [0, T ]×R→ R are measurable in t for any ξ ∈ R and
continuous in ξ for almost all t ∈ [0, T ]. There exist functions a(.), b(.), c(.), d(.),m(.)
and n(.) such that

|f1(t, ξ)| ≤ a(t) + b(t)|ξ|, |u(t, ξ)| ≤ m(t)

and

|f2(t, ξ)| ≤ c(t) + d(t)|ξ|, |v(t, ξ∗)| ≤ n(t) for all (t, ξ) ∈ [0, T ]× R,
where a(.), c(.),m(.), n(.) ∈ L1 and b(.), d(.) are measurable and bounded. Also,

Iγ1
q a(.) ≤M1, I

γ1
q m(.) ≤M2 and Iγ2

q c(.) ≤ N1, I
γ2
q n(.) ≤ N2,

for all γ1 ≤ α, γ2 ≤ γ and q ≥ 0.
(C3) There exists a number r > 0 such that

G
(
M1

Tα−γ1

Γ(α−γ1+1) + ||b||M2
Tα+β−γ1

Γ(α+β−γ1+1)

)
+H

(
N1

T γ−γ2

Γ(γ−γ2+1) + ||d||N2
T γ+δ−γ2

Γ(γ+δ−γ2+1)

)
1− ||L||

(
M1

Tα−γ1

Γ(α−γ1+1) + ||b||M2
Tα+β−γ1

Γ(α+β−γ1+1)

)
− ||K||

(
N1

T γ−γ2

Γ(γ−γ2+1) + ||d||N2
T γ+δ−γ2

Γ(γ+δ−γ2+1)

) ≤ r,
where G = sup

t∈[0,T ]

|g(t, 0)|, H = sup
t∈[0,T ]

|h(t, 0)| and

||L||
(
M1

Tα−γ1

Γ(α− γ1 + 1)
+ ||b||M2

Tα+β−γ1

Γ(α + β − γ1 + 1)

)
+ ||K||

(
N1

T γ−γ2

Γ(γ − γ2 + 1)
+ ||d||N2

T γ+δ−γ2

Γ(γ + δ − γ2 + 1)

)
< 1.

(C4) The functions f1, f2, u, v defined above satisfy

Iγ
(
|f2(t, Iδv(t, ξ∗(ψ4(t))))− f2(t, Iδv(t, ξ∗k(ψ4(t))))|

)
≤ Iα

(
|f1(t, Iβu(t, ξ(ψ2(t))))− f1(t, Iβu(t, ξk(ψ2(t))))|

)
(C5) ψi : [0, T ]→ [0, T ] are continuous functions with ψi(0) = 0, i = 1, 2, 3, 4.

Theorem 4.1. Assume that the conditions (C1)− (C5) hold. Then the nonlinear
functional integral equation of fractional order (1) has atleast one solution defined on
[0, T ].

Proof. We consider X = C(J,R) with J = [0, T ] and define a subset ∆ of X such
that

∆ = {ξ ∈ X, ||ξ|| ≤ r},
where r satisfies the first inequality in (C3). Clearly ∆ is closed, convex and bounded
in X.
Now we define four operators; P,R : X → X and Q,S : ∆→ X by:
Pξ(t) = g(t, ξ(ψ1(t))), Qξ(t) = Iαf1(t, Iβu(t, ξ(ψ2(t)))), Rξ(t) = h(t, ξ(ψ3(t))) and
Sξ(t) = Iγf2(t, Iδv(t, ξ(ψ4(t)))), where t ∈ J , ξ ∈ X.
Then the integral equation (1) can be written as:

ξ(t) = Pξ(t)Qξ(t) +Rξ(t)Ṡξ∗(t), t ∈ J.
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We show that P,Q,R and S satisfy all the conditions of Theorem 3.1.
Step 1: We first show that P and R are D-Lipschitzian on X. Let ξ, η ∈ X and
using (C1),

|Pξ(t)−Pη(t)| = |g(t, ξ(ψ1(t)))−g(t, η(ψ1(t)))| ≤ L(t) |ξ(ψ1(t))−η(ψ1(t))| ≤ ||L|| ||ξ−η||

which implies that, ||Pξ − Pη|| ≤ ||L|| ||ξ − η|| for all ξ, η ∈ X. Hence P is D-
Lipschitzian on X with D-function φP (t) = ||L||t, t ∈ R+. Similarly, we can show
that R is also a D-Lipschitzian on X with D-function φR(t) = ||K||t, t ∈ R+.
Step 2: We show that Q is continuous on ∆. Let {ξn} be a sequence in ∆ converging
to a point ξ ∈ ∆. Let us assume that t ∈ J and since u(t, ξ(t)) is continuous in X,
then u(t, ξn(t)) converges to u(t, ξ(t)). Then by Lebesgue dominated theorem and
using (C2), we get,

lim
n→∞

Iβu(s, ξn(ψ2(s))) = Iβu(s, ξ(ψ2(s))).

Since f1(t, ξ(t)) is continuous in X,

lim
n→∞

Qξn(t) = lim
n→∞

Iαf1(t, Iβu(t, ξn(ψ2(t)))) = Iαf1(t, Iβu(t, ξ(ψ2(t)))) = Qξ(t).

Hence, Qξn → Qξ as n→∞ uniformly on R+ and so Q is continuous operator on ∆.
Next we show that Q is a compact operator on ∆. Let ξ ∈ ∆ be arbitrry. Proceeding
as in Theorem 3.1 of [2] and using (C2) we have,

||Qξ(t)|| ≤M1
Tα−γ1

Γ(α− γ1 + 1)
+ ||b||M2

Tα−β−γ1

Γ(α− β − γ1 + 1)
= k.

Thus, ||Qξ(t)|| ≤ k for all ξ ∈ ∆. Hence, Q is uniformly bounded on ∆.
Now, we show that Q(∆) is equicontinuous on X. Let t1, t2 ∈ J and ξ ∈ ∆. Without
loss of generality, let t1 < t2. Then as in Theorem 3.1 of [2] we get,

|Qξ(t2)−Qξ(t1)| ≤ ||a||
{ |tα2 − tα1 − 2(t2 − t1)α|

Γ(α + 1)

}
+||b||M2

{ |tα2 − tα1 − 2(t2 − t1)α|T β−γ

Γ(α + 1)Γ(β − γ + 1)

}
.

Therefore, for ε > 0, there exists δ > 0 such that

|t2 − t1| < δ =⇒ |Qξ(t2)−Qξ(t1)| < ε,

for all t1, t2 ∈ J and ξ ∈ δ. Hence Q(∆) is equicontinuous in X and so, it is compact.
Thus Q is completely continuous on ∆.
Similarly, S is also completely continuous on ∆.
Step 3: Let ξ ∈ X and η ∈ ∆ be arbitrary elements such that ξ = PξQη + RξSη∗.
Then

|ξ(t)| ≤ |Pξ(t)| |Qη(t)|+ |Rξ(t)| |Sη∗(t)|

≤ |g(t, ξ(ψ1(t)))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβu(s, η(ψ2(s))))|ds

+ |h(t, ξ(ψ3(t)))|
∫ t

0

(t− s)γ−1

Γ(γ)
|f2(s, Iδv(s, η∗(ψ4(s))))|ds

≤
{
|g(t, ξ(ψ1(t)))− g(t, 0)|+ |g(t, 0)|

}∫ t

0

(t− s)α−1

Γ(α)

{
a(s) + b(s)Iβ|u(s, η(ψ2(s)))|

}
ds

+
{
|h(t, ξ(ψ3(t)))− h(t, 0)|+ |h(t, 0)|

}∫ t

0

(t− s)γ−1

Γ(γ)

{
c(s) + d(s)Iδ|v(s, η∗(ψ4(s)))|

}
ds
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≤
{
||L|| |ξ(ψ1(t))|+G

}∫ t

0

(t− s)α−1

Γ(α)

{
a(s) + b(s)Iβm(s)

}
ds

+
{
||K|| |ξ(ψ3(t))|+H

}∫ t

0

(t− s)γ−1

Γ(γ)

{
c(s) + d(s)Iδn(s)

}
ds

≤ {||L||r1 +G}{Iαa(t) + ||b||Iα+βm(t)}+ {||K||r1 +H}{Iγc(t) + ||d||Iγ+δn(t)}

≤ {||L||r1 +G}{Iα−γ1Iγ1a(t) + ||b||Iα+β−γ1Iγ1m(t)}

+ {||K||r1 +H}{Iγ−γ2Iγ2c(t) + ||d||Iγ+δ−γ2Iγ2n(t)}

≤ {||L||r1 +G}{M1

∫ t

0

(t− s)α−γ1−1

Γ(α− γ1)
ds+ ||b||M2

∫ t

0

(t− s)α+β−γ1−1

Γ(α+ β − γ1)
ds}

+ {||K||r1 +H}{N1

∫ t

0

(t− s)γ−γ2−1

Γ(γ − γ2)
ds+ ||d||N2

∫ t

0

(t− s)γ+δ−γ2−1

Γ(γ + δ − γ2)
ds}

≤ {||L||r1 +G}{M1
(s)α−γ1

Γ(α− γ1 + 1)
+ ||b||M2

(s)α+β−γ1

Γ(α+ β − γ1 + 1)
}

+ {||K||r1 +H}{N1
(s)γ−γ2

Γ(γ − γ2 + 1)
+ ||d||N2

(s)γ+δ−γ2

Γ(γ + δ − γ2 + 1)
}

≤ {||L||r1 +G}{M1
Tα−γ1

Γ(α− γ1 + 1)
+ ||b||M2

Tα+β−γ1

Γ(α+ β − γ1 + 1)
}

+ {||K||r1 +H}{N1
T γ−γ2

Γ(γ − γ2 + 1)
+ ||d||N2

T γ+δ−γ2

Γ(γ + δ − γ2 + 1)
}

So,

r1 ≤ {||L||r1 +G}{M1
Tα−γ1

Γ(α− γ1 + 1)
+ ||b||M2

Tα+β−γ1

Γ(α+ β − γ1 + 1)
}

+ {||K||r1 +H}{N1
T γ−γ2

Γ(γ − γ2 + 1)
+ ||d||N2

T γ+δ−γ2

Γ(γ + δ − γ2 + 1)
}

=⇒ r1 ≤
G
(
M1

Tα−γ1

Γ(α−γ1+1)
+ ||b||M2

Tα+β−γ1

Γ(α+β−γ1+1)

)
+H

(
N1

Tγ−γ2

Γ(γ−γ2+1)
+ ||d||N2

Tγ+δ−γ2

Γ(γ+δ−γ2+1)

)
1− ||L||

(
M1

Tα−γ1

Γ(α−γ1+1)
+ ||b||M2

Tα+β−γ1

Γ(α+β−γ1+1)

)
− ||K||

(
N1

Tγ−γ2

Γ(γ−γ2+1)
+ ||d||N2

Tγ+δ−γ2

Γ(γ+δ−γ2+1)

)
Taking supremum over t and using (C3) we get,

||ξ(t)|| ≤ r.

Hence, ξ ∈ ∆.
Step 4: Next we show that MφP (r) +NφR(r) < r, r > 0. From step 2 we have,

M = ||Q(∆)|| ≤M1
Tα−γ1

Γ(α− γ1 + 1)
+ ||b||M2

Tα+β−γ1

Γ(α + β − γ1 + 1)
.

In a similar way, we can show that

N = ||S(∆)|| ≤ N1
T γ−γ2

Γ(γ − γ2 + 1)
+ ||d||N2

T γ+δ−γ2

Γ(γ + δ − γ2 + 1)
.

Using (C3) we get,

MφP +NφR < 1,
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with φP = ||L|| and φR = ||K||.
Step 5: Finally we show that ||Sξ∗ − Sξ∗k|| ≤ ||Qξ −Qξk|| for every ξ, ξk ∈ ∆.
Now, by (C4),

|Sξ∗(t)− Sξ∗k(t)| ≤ Iγ
(
|f2(t, Iδv(t, ξ∗(ψ4(t))))− f2(t, Iδv(t, ξ∗k(ψ4(t))))|

)
≤ |Iα

(
f1(t, Iβu(t, ξ(ψ2(t))))− f1(t, Iβu(t, ξk(ψ2(t))))

)
|

= |Qξ(t)−Qξk(t)|.
Taking supremum over t, we get

||Sξ∗ − Sξ∗k|| ≤ ||Qξ −Qξk||.
Hence all the conditions of Theorem 3.1 is satisfied. So the operator equation ξ =
PξQξ + RξSξ∗ has a solution in ∆ and hence the functional integral equation of
fractional order (1) has a solution in J .

Uniqueness of the solution:
Let us consider the following condition:
(C6) Let f1, f2 : [0, T ]×R→ R and u, v : [0, T ]×R→ R be continuous functions satis-
fying the Lipschitz condition and there exists the positive functions Ω1(t),Ω2(t),Θ1(t),
Θ2(t) with norms ||Ω1||, ||Ω2||, ||Θ1|| and ||Θ2|| such that

|f1(t, ξ)− f1(t, η)| ≤ Ω1(t)|ξ − η|, |u(t, ξ)− u(t, η)| ≤ Θ1(t)|ξ − η|
and

|f2(t, ξ)− f2(t, η)| ≤ Ω2(t)|ξ − η|, |v(t, ξ)− v(t, η)| ≤ Θ2(t)|ξ − η|,
for all t ∈ [0, T ] and ξ, η ∈ R, where F1 = sup

t∈[0,T ]

|f1(t, 0)|, F2 = sup
t∈[0,T ]

|f2(t, 0)|,

U = sup
t∈[0,T ]

|u(t, 0)| and V = sup
t∈[0,T ]

|v(t, 0)|.

Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied with replacing (C2)
by (C6). Then the solution of the equation (1) is unique, if(

||L||
(
||Ω1||

Tα+β

Γ(α + β + 1)
(||Θ1|| ||ξ||+ U) + F1

Tα

Γ(α + 1)

)
+ (||L|| ||ξ||+G)||Ω1|| ||Θ1||

Tα+β

Γ(α + β + 1)

+ ||K||
(
||Ω2||

T γ+δ

Γ(γ + δ + 1)
(||Θ2|| ||ξ||+ V ) + F2

T γ

Γ(γ + 1)

)
+ (||K|| ||ξ||+H)||Ω2|| ||Θ2||

T γ+δ

Γ(γ + δ + 1)

)
< 1

Proof. If possible, let the equation (1) has two solutions ξ and η. Then

|ξ(t)− η(t)|

≤ |g(t, ξ(ψ1(t)))Iαf1(t, Iβu(t, ξ(ψ2(t))))− g(t, η(ψ1(t)))Iαf1(t, Iβu(t, η(ψ2(t))))|

+ |h(t, ξ(ψ3(t)))Iγf2(t, Iδv(t, ξ∗(ψ4(t))))− h(t, η(ψ3(t)))Iγf2(t, Iδv(t, η∗(ψ4(t))))|

≤ |g(t, ξ(ψ1(t)))− g(t, η(ψ1(t)))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβu(s, ξ(ψ2(s))))|ds
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+ |g(t, ξ(ψ1(t)))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβu(s, ξ(ψ2(s))))− f1(s, Iβu(s, η(ψ2(s))))|

+ |h(t, ξ(ψ3(t)))− h(t, η(ψ3(t)))|
∫ t

0

(t− s)γ−1

Γ(γ)
|f2(s, Iδv(s, ξ(ψ4(s))))|ds

+ |h(t, ξ(ψ3(t)))|
∫ t

0

(t− s)γ−1

Γ(γ)
|f2(s, Iδv(s, ξ(ψ4(s))))− f2(s, Iδv(s, η(ψ4(s))))|

≤ |L(t)| |ξ(ψ1(t))− η(ψ1(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβu(s, ξ(ψ2(s))))− f1(s, 0) + f1(s, 0)|ds

+ |g(t, ξ(ψ1(t)))− g(t, 0) + g(t, 0)|
∫ t

0

(t− s)α−1

Γ(α)
|Ω1(s)| |Iβu(s, ξ(ψ2(s)))− Iβu(s, η(ψ2(s)))|ds

+ |K(t)| |ξ(ψ3(t))− η(ψ3(t))|
∫ t

0

(t− s)γ−1

Γ(γ)
|f2(s, Iδv(s, ξ(ψ4(s))))− f2(s, 0) + f2(s, 0)|ds

+ |h(t, ξ(ψ3(t)))− h(t, 0) + h(t, 0)|
∫ t

0

(t− s)γ−1

Γ(γ)
|Ω2(s)| |Iδv(s, ξ(ψ4(s)))− Iδv(s, η(ψ4(s)))|ds

≤ |L(t)| |ξ(ψ1(t))− η(ψ1(t))|
∫ t

0

(t− s)α−1

Γ(α)

(
|Ω1(s)|Iβ |u(s, ξ(ψ2(s)))|+ F1

)
ds

+
(
|L(t)| |ξ(ψ1(t))|+G

)∫ t

0

(t− s)α−1

Γ(α)
|Ω1(s)|

∫ s

0

(s− p)β−1

Γ(β)
|u(p, ξ(ψ2(p)))− u(p, η(ψ2(p)))|dsdp

+ |K(t)| |ξ(ψ3(t))− η(ψ3(t))|
∫ t

0

(t− s)γ−1

Γ(γ)

(
|Ω2(s)|Iδ|v(s, ξ(ψ4(s)))|+ F2

)
ds

+
(
|K(t)| |ξ(ψ3(t))|+H

)∫ t

0

(t− s)γ−1

Γ(γ)
|Ω2(s)|

∫ s

0

(s− p)δ−1

Γ(δ)
|v(p, ξ(ψ4(p)))− v(p, η(ψ4(p)))|dsdp

≤ ||L|| ||ξ − η||
(
||Ω1||

∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

(s− p)β−1

Γ(β)
(|Θ1(p)| |ξ(ψ2(p))|+ U)

+

∫ t

0

(t− s)α−1

Γ(α)
F1ds

)
dsdp

+
(
||L|| ||ξ||+G

)
||Ω1|| ||Θ1||

∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

(s− p)β−1

Γ(β)
|ξ(ψ2(p))− η(ψ2(p))|dsdp

+ ||K|| ||ξ − η||
(
||Ω2||

∫ t

0

(t− s)γ−1

Γ(γ)

∫ s

0

(s− p)δ−1

Γ(δ)
(|Θ2(p)| |ξ(ψ4(p))|+ V )

+

∫ t

0

(t− s)γ−1

Γ(γ)
F2ds

)
dsdp

+
(
||K|| ||ξ||+H

)
||Ω2|| ||Θ2||

∫ t

0

(t− s)γ−1

Γ(γ)

∫ s

0

(s− p)δ−1

Γ(δ)
|ξ(ψ4(p))− η(ψ4(p))|dsdp

≤ ||L|| ||ξ − η||
(
||Ω1||

Tα+β

Γ(α+ β + 1)
(||Θ1|| ||ξ||+ U) + F1

Tα

Γ(α+ 1)

)
+ (||L|| ||ξ||+G)||Ω1|| ||Θ1||

Tα+β

Γ(α+ β + 1)
||ξ − η||

+ ||K|| ||ξ − η||
(
||Ω2||

T γ+δ

Γ(γ + δ + 1)
(||Θ2|| ||ξ||+ V ) + F2

T γ

Γ(γ + 1)

)
+ (||K|| ||ξ||+H)||Ω2|| ||Θ2||

T γ+δ

Γ(γ + δ + 1)
||ξ − η||,

Taking supremum over t we get,

||ξ − η|| ≤

(
||L||

(
||Ω1||

Tα+β

Γ(α+ β + 1)
(||Θ1|| ||ξ||+ U) + F1

Tα

Γ(α+ 1)

)
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+ (||L|| ||ξ||+G)||Ω1|| ||Θ1||
Tα+β

Γ(α+ β + 1)

+ ||K||
(
||Ω2||

T γ+δ

Γ(γ + δ + 1)
(||Θ2|| ||ξ||+ V ) + F2

T γ

Γ(γ + 1)

)
+ (||K|| ||ξ||+H)||Ω2|| ||Θ2||

T γ+δ

Γ(γ + δ + 1)

)
||ξ − η||

Hence the solution is unique.

5. Conclusion

For nonlinear differential and integral equations, fixed point theory offers powerful
techniques for establishing the existence and uniqueness of solutions. In this paper,
we have derived a fixed point result using four operators in Banach *-algebra which
generalizes different existing fixed point results in the setting of Banach algebra. Also,
we have applied our result to solve a functional integral equation of fractional order
which shows the existence and uniqueness of the solution. In [2], Alissa et al. derived
an application regarding fractional hybrid differential equations using fixed point the-
orem of Dhage [9]. In [21], Metwali et al. gave an application to prove the existence of
solution for an initial value problem of fractional order using Darbo fixed point theo-
rem associated with the fractional calculus and measure of noncompactness. Similar
applications of our results can be investigated to some other types of functional inte-
gral equations and hybrid differential equations of fractional order as well as integral
inequalities involving k-fractional order integral operators (refer to [6], [23]).
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