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DECIMAL EXPANSION OF THE SQUARE ROOT OF A

NONNEGATIVE INTEGER

Gyu Whan Chang and Geon Woo Jeon

Abstract. For positive integers n and k, with k ≤ 2n, let√
n2 + k = nt · · ·n1.a1a2a3 · · ·

be the decimal expansion of
√
n2 + k. In this paper, we introduce a systematic

method of how to calculate the value of ai for all i = 1, 2, . . . .

Let N be the set of natural numbers, N0 = N∪ {0}, [[a, b]] = {m ∈ N0 | a ≤ m ≤ b}
for any a, b ∈ N0, with a < b, and An = {n2, n2+1, . . . , n2+2n} for all n ∈ N0. Then
An = [[n2, n2 + 2n]], |An| = 2n+ 1 and {An | n ∈ N0} is a partition of N0, so a ∈ N0 if
and only if a ∈ An for some unique n ∈ N0. Now let

√
n2 + k = nt . . . n1.a1a2 · · ·

be the decimal expansion of
√
n2 + k for integers n, k ∈ N0, with k ≤ 2n. In this

paper, we introduce a systematic method of how to calculate the value of ai for all
i ∈ N0. We first prove a theorem by which we can systematically classify the value
of a1 by dividing n into five cases, i.e., n ≡ i (mod 5) for i ∈ [[0, 4]]. We then give a
simple corollary of the theorem which can be used to obtain the values of a2, a3, . . .
in order.

Throughout this note we use the following notations.

Notation. For a nonnegative integer n, let

(a) φn : An → [[0, 9]] be a function defined by φn(x) = the number at the first
decimal place of

√
x and

(b) n(y) = |φ−1
n ({y})| for each y ∈ [[0, 9]].

In this note we must keep it in mind that if a ∈ An is such that
√
a = m = (m− 1).999 · · ·

for some integerm, then φn(a) = 0 but not 9, i.e., φn(a) ̸= 9. For example, φn(n
2) = 0

but φn(n
2) ̸= 9 for all n ∈ N0.
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Now, let R be the set of real numbers and [x] be the greatest integer less than or
equal to a real number x ∈ R, so if Z is the set of integers, then [ ] : R → Z, called
the greatest integer function, is a function. It is easy to see that [n+ x] = n+ [x] for
any n ∈ Z and x ∈ R. See [1, Section 6.3] for some basic properties of the greatest
integer function. We first give a simple lemma which plays a key role in the proof of
the results in this paper.

Lemma 1. Let y ∈ [[0, 9]], n ∈ N0, and k ∈ [[0, 2n]]. Then φn(n
2 + k) = y if and

only if 0.2yn+ 0.01y2 ≤ k < 0.2(y + 1)n+ 0.01(y + 1)2.

Proof. (⇒) It is clear that
√
n2 + k = n+ θ for a suitable choice of a real number

θ, with 0 ≤ θ < 1. So if φn(n
2 + k) = y, then 0.1y ≤ θ < 0.1(y + 1), and hence

0.01y2 ≤ θ2 < 0.01(y + 1)2 and 0.2yn ≤ 2nθ < 0.2(y + 1)n. Moreover, k = 2nθ + θ2

by the equality of
√
n2 + k = n+ θ, so we have

0.2yn+ 0.01y2 ≤ k < 0.2(y + 1)n+ 0.01(y + 1)2.

(⇐) Let [a, b) = {x ∈ R | a ≤ x < b} be as usual for a, b ∈ R, with a < b. Then
the result can be proved by noting that

{[0.2yn+ 0.01y2, 0.2(y + 1)n+ 0.01(y + 1)2) | y ∈ [[0, 9]]}
is a partition of [0, 2n+ 1).

We are now ready to give the main result of this paper.

Theorem 2. For a nonnegative integer n, the following statements hold.

(1) φn is increasing.
(2) φn is surjective if and only if n ≥ 5.
(3) (n+ 5)(y) = n(y) + 1 for each y ∈ [[0, 9]].

Proof. (1) Let a, b ∈ An, with a < b. Then n2 ≤ a < b < (n + 1)2, and hence

n ≤
√
a <

√
b < n+ 1. Thus, φn(a) ≤ φn(b).

(2) If n ≤ 4, then |An| = 2n + 1 ≤ 9, and hence φn(An) ⊊ [[0, 9]]. Thus, if φn is
surjective, then n ≥ 5. Conversely, assume that n ≥ 5. Then we have to consider the
three cases of when y = 0, y ∈ [[1, 8]] and y = 9 by Lemma 1 and the properties of the
greatest integer function [ ].

Case 1. y = 0. Then, by Lemma 1, n(y) = [0.2n+0.01]+1 ≥ [1.01]+1 = 2, where
the first inequality follows because n ≥ 5.

Case 2. y ∈ [[1, 8]]. Then none of 0.2yn + 0.01y2 and 0.2(y + 1)n + 0.01(y + 1)2 is
an integer, and hence, by Lemma 1,

n(y) = [0.2(y + 1)n+ 0.01(y + 1)2]− [0.2yn+ 0.01y2]

≥ [0.2(y + 1)n+ 0.01(y + 1)2 − 0.2yn− 0.01y2]

= [0.2n+ 0.02y + 0.01]

≥ [0.2n] ≥ 1,

where the last inequality follows because n ≥ 5.
Case 3. y = 9. Then, by Lemma 1, n(y) = (2n + 1) − ([1.8n + 0.81] + 1) =

2n− [1.8n+0.81] ≥ 2n− [2n− 1+0.81] = 2n− (2n− 1+ [0.81]) = 1, where the third
inequality follows from that n ≥ 5 implies 1.8n ≤ 2n− 1.
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Therefore, by Case 1, 2 and 3, φn is surjective.

(3) Let y ∈ [[0, 9]]. By a simple calculation, (n+ 5)(y) = n(y) + 1 for all n ∈ [[0, 4]]
and y ∈ [[0, 9]], so we assume that n ≥ 5. Then, as in the case of the proof of (2)
above, we have three cases to prove.

Case 1. y = 0. Then (n+ 5)(y) = [0.2(n+ 5) + 0.01] + 1 = [0.2n+ 1+ 0.01] + 1 =
([0.2n+ 0.01] + 1) + 1 = n(y) + 1 by Lemma 1.

Case 2. y ∈ [[1, 8]]. Then, by Lemma 1,

(n+ 5)(y) = [0.2(y + 1)(n+ 5) + 0.01(y + 1)2]− [0.2y(n+ 5) + 0.01y2]

= [0.2(y + 1)n+ 0.01(y + 1)2 + y + 1]− [0.2yn+ 0.01y2 + y]

= ([0.2(y + 1)n+ 0.01(y + 1)2]− [0.2yn+ 0.01y2]) + 1

= n(y) + 1.

Case 3. y = 9. Then (n+ 5)(y) = 2(n + 5) − [1.8(n + 5) + 0.81] = (2n + 10) −
[1.8n+ 0.81 + 9] = (2n− [1.8n+ 0.81]) + 1 = n(y) + 1 by Lemma 1.

The following corollary is an application of Theorem 2. We can use this result to
classify the number at the first decimal place of

√
a for all a ∈ N0.

Corollary 3. Let n be a nonnegative integer. Then the following statements
hold.

(1) (5n)(l) =

{
n+ 1, l = 0
n, l ∈ [[1, 9]].

(2) (5n+ 1)(l) =

{
n+ 1, l = 0, 4, 7
n, l = 1, 2, 3, 5, 6, 8, 9.

(3) (5n+ 2)(l) =

{
n+ 1, l = 0, 2, 4, 6, 8
n, l = 1, 3, 5, 7, 9.

(4) (5n+ 3)(l) =

{
n+ 1, l = 0, 1, 3, 4, 6, 7, 8
n, l = 2, 5, 9.

(5) (5n+ 4)(l) =

{
n+ 1, l ∈ [[0, 8]]
n, l = 9.

Proof. This can be proved by a simple calculation and Theorem 2(3).

We next give a very useful method by which, together with Corollary 3, we can
calculate the numbers at all of the decimal places of

√
a for each a ∈ An.

Corollary 4. Let n and k be positive integers, with k ∈ [[1, 2n]], and
√
n2 + k = nt · · ·n1.a1a2 · · ·

be the decimal expansion of
√
n2 + k, so ni, aj ∈ [[0, 9]] and n = nt · · ·n1 = nt×10t−1+

· · ·+ n2 × 10 + n1. For an integer r ∈ N, with r ≥ 2, let

· a = n× 10r−1,
· b = a1 × 10r−2 + · · ·+ ar−2 × 10 + ar−1,
· N = a+ b,
· K = k × (10r−1)2 − 2ab− b2,
· ar−1 = 5δ + i for i ∈ [[0, 4]] and δ ∈ {0, 1}, and
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· m =

{
2n+ δ, r = 2
2(n× 10r−2 + a1 × 10r−3 + · · ·+ ar−2) + δ, r ≥ 3.

Then the following statements hold.

(1) N = 5m+ i,
(2) 0 ≤ K ≤ 2N ,
(3)

√
N2 +K = nt · · ·n1a1 · · · ar−1.arar+1 · · · , which is the decimal expansion of√
N2 +K, and

(4) ar = φN(N
2 +K).

Proof. (1) and (2) are clear.

(3) Note that, by a simple calculation,
√
N2 +K =

√
(10r−1n)2 + (10r−1)2k

= 10r−1
√
n2 + k

= nt · · ·n1a1 · · · ar−1.arar+1 · · · .

Thus, nt · · ·n1a1 · · · ar−1.arar+1 · · · is the decimal expansion of
√
N2 +K.

(4) This follows directly from (2) and (3) above.

There are too many cases we have to consider in order to classify the value of ar
in Corollary 4 as in Corollary 3. However, if r is sufficiently large, there is almost a

100% chance that the value of ar will become [5(K−1)
N

] by Corollary 3.

The following corollary is a special case of Corollary 4 in which the value of ar can
be easily calculated.

Corollary 5. Let the notation be as in Corollary 4, and assume that 10r−1 ≤ [2n
k
].

Then the following statements are satisfied.

(1) N = n× 10r−1,
(2) K = k × (10r−1)2,
(3) a1 = · · · = ar−1 = 0, and
(4) ar = q if and only if q(2 · 10r−2n) + 1 ≤ (10r−1)2k ≤ (q + 1)(2 · 10r−2n).

Proof. (1), (2), and (3) If 10r−1 ≤ [2n
k
], then k×10r−1 ≤ 2n. Hence, N = n×10r−1

and K = k × (10r−1)2, which implies that a1 × 10r−2 + · · · + ar−2 × 10 + ar−1 = 0.
Thus, a1 = · · · = ar−1 = 0.

(4) Since r ≥ 2, 2·10r−2n is a positive integer and 10r−1n = 5(2·10r−2n). Moreover,
K = (10r−1)2k ≤ 2(10r−1n) = 2N by assumption. Thus, the result follows directly
from (1) above, Corollary 3(1) and Theorem 2(1).

Next, we give a concrete example of how to use the result of this paper to calculate
the decimal expansion of

√
n for n ∈ N0.

Example 6. Let √
26 = 5.a1a2a3 · · ·

be the decimal expansion of
√
26; in this case, n = 5 and k = 1 in Corollary 4. We

now use the results of this note to calculate the values of a1, a2, a3 and a4.

⋄ a1 = 0 by Corollary 5(3) (note that 102−1 ≤ [2·5
1
]).
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⋄ a2 = 9 by the inequalities of 9 · (2 · 10r−2n) + 1 ≤ (10r−1)2k ≤ (9+ 1)(2 · 10r−2n)
in Corollary 5(4) (note that 102−1 ≤ [2·5

1
]).

⋄ In Corollary 4, if r = 3, n = 5, k = 1, then N = 5× 101 + 4, K = 919, m = 101,
and 919 = 9m+ 10. Hence, by Corollary 3(5), a3 = 9.

⋄ In Corollary 4, if r = 4, n = 5, k = 1, then N = 5×1019+4, K = 199, m = 1019,
and 199 < 1019. Hence, by Corollary 3(5), a4 = 0.

In fact,
√
26 = 5.0990195 · · · .

Let the notation be as in Corollary 4. Then the results of this paper say that if the
values of a1, . . . , ar are obtained, then we can use these values to calculate the value
of ar+1 for all r ∈ N. Even though we don’t know how practical this method is for
calculating the decimal expansion of

√
m for an integer m ∈ N0, it is an interesting

result of finding that there is some regularity in that expansion.
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