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ON RIGIDITY OF GRADIENT CONFORMAL RICCI SOLITONS

Avijit Sarkar and Babita Sarkar

Abstract. A soliton is a self similar solution of a non-linear PDE. Here we are
associated with self similar solutions of the conformal Ricci flow which is a heat
type pseudo parabolic partial differential equation in the perspective of Riemannian
manifolds. The goal of the present article is to find some rigidity results on gradient
conformal Ricci solitons. Some characterizations of conformal gradient Ricci solitons
have been provided in terms of scalar curvature satisfying the Poisson equation.

1. Introduction

A Ricci soliton is a self similar solution of Hamilton’s Ricci-flow [12] which is
a pseudo-parabolic heat type partial differential equation. Theory of Ricci soliton
became a ground of intensive study after the work of Perelman [15] to solve the
famous Poincare conjecture.

A Riemannian manifold (Mn, g) ia a Ricci soliton if there exists a vector field X
that satisfies

Ric+
1

2
£Xg = λg,

where Ric and £ stand, respectively, for the Ricci tensor and Lie derivative. It is
called expanding, steady or shrinking, if λ < 0, λ = 0, or λ > 0.

The theory has been further developed by several authors [1,3,5,6,13,14,16,17,20].
A Ricci soliton is known as gradient Ricci soliton [10] if the potential vector field is
gradient of a function f ; i.e., X = ∇f . In that case the preceding equation turns out
to be

Ric+Hessf = λg,

where Hessf stands for the ∇2f.
In (1, 1) tensor form, the Ricci soliton equation can be written as

Q+∇∇f = λI,

or, in condensed form
Q+ S = λI,

S = ∇∇f,
where Q is the Ricci operator defined by g(QX, Y ) = Ric(X, Y ).
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Fischer [9] developed the theory of conformal Ricci flow in order to treat some
aspects of relativistic mechanics and gravitation. Conformal Ricci flow is a variation
of classical Ricci flow that replaces the unit volume constraint of the evolution equation
to a scalar curvature constraint. Such a flow equation is analogous to Navier-Stokes
equation of fluid mechanics. A conformal Ricci soliton is a self similar solution of
conformal Ricci flow, upto diffeomorphisms and scalings. Ricci almost solitons and
conformal Ricci solitons have been analyzed by the first author of the present paper
in [10,18,19].

Concrete examples of conformal Ricci solitons can be foumd in [9] and [8]. Ac-
cording to [8], conformal Ricci solitons can be interpreted as a kinematic solution
of conformal Ricci flow, whose profile yields a characterization of spaces of constant
sectional curvature along with the locally symmetric spaces. In addition, geometric
phenomenon of conformal Ricci solitons can evolve an interlink between a sectional
curvature inheritance symmetry of space time and class of Ricci solitons. Conformal
Ricci soliton is important since it helps in explaining the concepts of energy or entropy
in general relativity.

If f is trivial, then the soliton represents Einstein metric. If f = λ
2
|x|2 on Rk,

then Hessf = λg, consequently, the soliton is a flat gradient soliton. Combining the
two cases, if we construct the product N × Rk with N being Einstein, we get a new
gradient soliton. Now, consider the quotient space N ×Γ Rk, where Γ acts freely on
N and by orthogonal transformations without translation components on Rk. The
quotient space provides a flat vector bundle over a base that is Einstein. The space is
a gradient soliton with f = λ

2
d2, where d is the distance in the flat fibers to the base.

Any gradient soliton of the form N ×Γ Rk is called a rigid soliton [16].

As for examples of rigid solitons it can be mentioned that in dimensions two or
three all compact solitons are rigid. In higher dimensions if a soliton is steady or
expanding, in addition with being compact, then it is also rigid [12–14]. On the other
hand Perelman proved that if a three-dimensional shrinking gradient Ricci soliton
with non-negative sectional curvature is rigid [15].

It is known that [16], if a gradient Ricci soliton is Rigid, then its radial curvature
vanishes and its scalar curvature is constant. This is why a gradient Ricci soliton
is important in view of geometric perspective as the scalar curvature of a manifold
primarily represent the geometry of the manifold. In essence, a rigid Ricci soliton
is one that possesses a nice unchanging structure, characterized by constant scalar
curvature and radial flatness and can be considered as a flat bundle.

The Rigidity conditions for a gradient Ricci soliton was established by Petersen
and Wylie [16]. Motivated by this work, in the present article, we find out the rigidity
conditions for a gradient conformal Ricci soliton which will be a nice generalization
of the work of Petersen and Wylie.

The Poisson equation [11] ∆ϕ = σ on a Riemannian manifold provides a unique
solution upto constant, whenever

∫
σ = 0 on the manifold. In order to study geometry

of compact Ricci solitons, Poisson equation is an important tool [4].

Chen [4] established some beautiful geometric properties of compact shrinking Ricci
solitons in terms of scalar curvature satisfying Poisson equation. By natural intuition
one feels urge to characterize geometry of gradient conformal Ricci solitons in terms
of scalar curvature satisfying the Poisson equation. Thus, one of our goals is also
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to analyze scalar curvature of a gradient conformal Ricci solitons satisfying Poisson
equation.

The present article is constitututed as follows:
After the introduction in Section 1, some basic and preliminary results have been

assembled and established in Section 2. Rigidity conditions for conformal Ricci soli-
tons have been established in Section 3. Section 4 deals with some characterizations
of conformal Ricci solitons in terms of scalar curvature satisfying Poisson equation.

2. Basic notations and results

On a closed connected orientable differentiable manifold (Mn, g) the conformal
Ricci flow equation is of the form

∂g

∂t
+ 2(Ric+

g

n
) = −Pg,

s(g) = −1,

where P represents a time dependent non-dynamical scalar field and s(g) being the
scalar curvature of the manifold. Here the action of −Pg maintains the scalar cur-
vature constraint. In this manner, the conformal Ricci flow equation is analogous to
classical Navier-Stokes equation of fluid flow. From this point of view P is also termed
as conformal pressure. A conformal Ricci soliton is a self similar solution of conformal
Ricci flow and it is assumed as a kind of generalization of the classical Ricci soliton.

For a constant λ and a vector field X, a Riemannian manifold M of dimension n
with a metric g is a conformal Ricci soliton if [2, 7]

Ric+
1

2
£Xg = (λ− (

P

2
+

1

n
))g,

where P is the conformal pressure.
When the vector field X is gradient of a smooth function defined on the manifold,

the soliton is called gradient conformal Ricci soliton. Such a soliton is represented by

Ric+∇∇f = (λ− (
P

2
+

1

n
))g,

where gradient of f is the vector field X.
As a property of a rigid soliton, the following is well known:

R(.,∇f)∇f = 0.

Also both the scalar curvature and conformal pressure are constants. In the converse
situation, constant scalar curvature, constant conformal pressure and Ricci flatness
R(.,∇f)∇f = 0, each implies rigidity of compact solitons. For the aspects of non-
compact case, one may follow [16]. Thus the discussion can be formulated as
Theorem 2.1. A shrinking (expanding ) gradient conformal Ricci soliton

Ric+Hessf = (λ− (
P

2
+

1

n
))g

is rigid if and only if it has constant scalar curvature, constant conformal pressure
and is radially flat.
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If φ be a smooth function defined on a compact Riemannian manifoldM its average
φav, is

φav =
1

V ol(M)

∫
M

φ.

The Poisson equation on a Riemannian manifold (M, g) is

∆φ = σ,

where ∆ is the Laplace operator, σ is a given function, and φ is the solution to be
determined.

Let us establish some results to be used in the sequel.
Lemma 2.2. For an n-dimensional Riemannian manifold with metric g, one has

div(£Xg) =
1

2
∆|X|2 − |∇X|2 +Ric(X,X) +DXdivX.

For X = ∇f ,
(div£Xg)(Z) = 2Ric(Z,X) + 2DZdivX

or,
div∇∇f = Q(∇f) +∇∆f,

where Q indicates the Ricci operator.

Proof. By a routine calculation, one can infer

div(£Xg)(X) = ∆
1

2
|X|2 − |∇X|2 +Ric(X,X) +DXdivX.

If Z → ∇ZX is self-adjoint, then

(div£Xg)(Z) = 2Ric(Z,X) + 2DZdivX.

Corollary 2.3. If X is a Killing vector field, then,

∆
1

2
|X|2 = |∇X|2 −Ric(X,X).

Proof. £Xg = 0 = divX gives the above.

Now we focus to gradient conformal Ricci solitons. For this case we use (1, 1) tensors
and write the soliton equation as

Q+∇∇f = (λ− (
P

2
+

1

n
))I,

or, in condensed form

Q+ S = (λ− (
P

2
+

1

n
))I,

S = ∇∇f.
Lemma 2.4. On a gradient conformal Ricci soliton, the following relations hold :

(i) ∇s = 2Q(∇f)− n∇P,

(ii) ∇∇fS + S ◦ S − (λ− P
2
− 1

n
)I = −R(.,∇f)∇f − 1

2
∇.∇s− n

2
∇.∇P,

(iii) ∇∇fQ+Q ◦ (λ− P
2
+ 1

n
)I −Q = R(.,∇f)∇f + 1

2
∇.∇s+ n

2
∇.∇P,
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(iv) 1
2
∆fs+

n
2
∆fP − n∇∇fP = tr(Q ◦ ((λ− P

2
− 1

n
)I −Q)).

Proof. As a consequence of Bochner formula we infer

div(∇∇f) = Q(∇f) +∇∆f.

By tracing the soliton equation one has

s+∆f = n(λ− (
P

2
+

1

n
)),

∇s+∇∆f = −n
2
∇P.

Further, divergence of solition equation yields

divQ+ div(∇∇f) = 0.

Combining the above

∇s = 2divQ = −2Q(∇f) + 2∇s+ n∇P
and hence (i) is realized.

From the definition of curvature tensor

R(E,∇f)∇f = ∇E∇∇f∇f −∇∇f∇E∇f −∇[E,∇f ]∇f
= ∇2

E,∇f∇f −∇2
∇f,E∇f.

Now

∇2
∇f,E∇f = (∇∇fS)(E) = −(∇∇fQ)(E).

Also

∇2
E,∇f∇f = −(∇EQ)(∇f)

= −1

2
∇E∇s−

n

2
∇E∇P +Q ◦ ((λ− P

2
− 1

n
)I −Q).

Therefore (ii) is reached.
Tracing (ii), we obtain (iii). Further tracing (iii), we infer

∇∇fs+ tr(Q ◦ ((λ− P

2
− 1

n
)I −Q)) = Ric(∇f,∇f) + 1

2
∆s+

n

2
∆P,

since

Ric(∇f,∇f) = 1

2
D∇fs+

n

2
D∇fP.

Hence, (iv) follows.

Remark 2.5. Considering λi as the eigenvalues of the Ricci operator, we have dif-
ferent version of the result (iv) as follows.

1

2
∆fs+

n

2
∆fP − n∇∇f = tr(Q ◦ ((λ− P

2
− 1

n
)I −Q))

=
∑

λi(λ− P

2
− 1

n
− λi)

= −|Q2|+ (λ− P

2
− 1

n
)s

= −|Q− 1

n
sg|2 + s(λ− P

2
− 1

n
− 1

n
s).
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Proposition 2.6. On a compact gradient conformal Ricci soliton M of dimension n∫
M

(n(λ− (
P

2
+

1

n
))− s) = 0.

Proof. Suppose (M, g, f, λ) be an n-dimensional compact gradient conformal Ricci
soliton . Also consider χ(M) as the Lie algebra of smooth vector fields on M . So, we
infer

(1) Hf (X, Y ) +Ric(X, Y ) = (λ− (
P

2
+

1

n
))g(X, Y ), X, Y ∈ χ(M),

where Hf (X, Y ) = g(∇X∇f, Y ) is the Hessian and ∇f is the gradient of the potential
function f .

By virtue of (1) one can conclude

(2) ∆f = n(λ− (
P

2
+

1

n
))− s,

where ∆f = Trace(Hf ) is the Laplacian of f . The Ricci operator Q agrees with the
equation

(3) Ric(X, Y ) = g(QX, Y ), X, Y ∈ χ(M).

Hence,

(4)
∑
i

(∇Q)(ei, ei) =
1

2
∇s,

where {e1, ......., en} is a local orthogonal frame and ∇Q is the covarient derivative of
Q defined by

(∇Q)(X, Y ) = ∇X(QY )−Q(∇XY ).

Consider the symmetric operator Af given by

Hf (X, Y ) = g(AfX, Y ), X, Y ∈ χ(M).

Now it follows that

(∇Af )(X, Y )− (∇Af )(Y,X) = R(X, Y )∇f.
Using the above equation, ∆f = Trace(Af ), and the symmetry of Af ,one obtains

(5) X(∆f) =
∑
i

g((∇Af )(X, ei), ei)

=
∑
i

g((∇Af )(ei, X) +R(X, ei)∇f, ei)

= −Ric(X,∇f) +
∑
i

g((∇Af )(ei, ei), X)

for X ∈ χ(M). Again by virtue of (1)

(∇Af )(X, Y ) = −(∇Q)(X, Y ).

In view of (2), (4), (5) and the above equation we infer

−X(s) = −Ric(X,∇f)− 1

2
X(s),

which yields

(6) Q(∇f) = 1

2
∇s.
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If (M, g, f, λ), is connected, in view of (1) and (6) one obtains

1

2
X(||∇f ||2 + s) = Hf (X,∇f) +Ric(X,∇f) = (λ− (

P

2
+

1

n
))g(X,∇f),

that is

X(||X||2 + s− 2(λ− (
P

2
+

1

n
))f) = 0, X ∈ χ(M).

This gives
1

2
(||∇f ||2 + s)− (λ− (

P

2
+

1

n
))f = c

for a constant c. Now, after replacing the potential function f of the connected
gradient conformal Ricci soliton (M, g, f, λ) by f − c

(λ−(P
2
+ 1

n
))

and assuming λ >

(P
2
+ 1

n
), we see that the gradient conformal Ricci soliton (M, g, f, λ) satisfies

(7) 2(λ− (
P

2
+

1

n
)f = ||∇f ||2 + s.

Also, equation (2) gives

(8)

∫
M

(n(λ− (
P

2
+

1

n
))− s) = 0.

3. Rigidity characterizations of gradient conformal Ricci solitons

Theorem 3.1. A compact conformal Ricci soliton with

Ric(X,X) ≤ 0

is Einstein. In particular, compact conformal gradient solitons with constant scalar
curvature and constant conformal pressure are Einstein.

Proof. By definition

Ric+£Xg = (λ− (
P

2
+

1

n
))g.

Then Laplacian of X satisfies

∆
1

2
|X|2 = |∇X|2 −Ric(X,X) ≥ 0.

By divergence theorem, one has ∇X = 0. In particular £Xg = 0.
The second part follows for X = ∇f and the equation

D∇fs = 2Ric(∇f,∇f)− nD∇fP.

Proposition 3.2. A gradient conformal Ricci soliton with nonnegative(or nonposi-
tive) Ricci curvature has constant scalar curvature and constant conformal pressure if
and only if Ric(∇f,∇f) = 0.

Proof. For a self adjoint operator T which is non-negative or non-positive, one has

< Tv, v >= 0 =⇒ Tv = 0.

Replacing T by Ricci tensor and using ∇s = 2Q(∇f)− n∇P the result is reached.
Steady solitons are also easy to deal with.
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Proposition 3.3. A steady gradient conformal Ricci soliton with constant scalar cur-
vature and constant conformal pressure is a Ricci flat. Moreover, if f is not constant
then it is a product of a Ricci flat manifold with R.

Proof. It is seen that

0 =
1

2
∆fs+

n

2
∆fP − n∇∇fP

= −|Q− 1

n
sg|2 + s((λ− P

2
− 1

n
)− 1

n
s)

= −|Q− 1

n
sg|2 − (

P

2
+

1

n
)s− 1

n
s2

≤ 0

Consequently, s = 0, P = 0 and Q = 0. Thus, Hessf = 0. Therefore, either f is
constant or M splits along the gradient of f .

Now, we prove the following:

Proposition 3.4. Consider a gradient conformal Ricci soliton

Ric+Hessf = (λ− (
P

2
+

1

n
))g

with constant scalar curvature, constant conformal pressure and λ ̸= 0. When λ > 0
we have 0 ≤ s ≤ (λ − (P

2
+ 1

n
))n. When λ < 0 we have (λ − (P

2
+ 1

n
))n ≤ s ≤ 0.

In either case the metric is Einstein when the scalar curvature equals either of the
extreme values.

Proof. As

0 =
1

2
∆fs+

n

2
∆fP − n∇∇fP

= −(Q− 1

n
sg)2 + s((λ− P

2
− 1

n
)− 1

n
s),

one can write

0 ≤ (Q− 1

n
sg)2 = s((λ− P

2
− 1

n
)− 1

n
s).

So, s∈ [0, (λ − (P
2
+ 1

n
))n] if λ > (P

2
+ 1

n
) and the metric is Einstein if the scalar

curvature takes on either of the boundary values. For expanding case, the similar
result follows.

Proposition 3.5. For a shrinking gradient conformal Ricci soliton

Ric+Hessf = (λ− (
P

2
+

1

n
))g

each of the following conditions implies that it is radially flat.
(1) The scalar curvature and conformal pressure are constant and sec(E,∇f) ≥ 0.
(2) The scalar curvature and conformal pressure are constant and 0 ≤ Q ≤ (λ− P

2
−

1
n
)g.

(3) The curvature tensor is harmonic.

Proof. (1) By

0 =
1

2
∇∇fs+

n

2
∇∇fP = Ric(∇f,∇f) = Σg(R(Ei,∇f)∇f, Ei)
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we see that g(R(Ei,∇f)∇f, Ei) = 0 if the radial curvatures are always nonnegative
(nonpositive). Which is not possible. Hence R(Ei,∇f)∇f = 0 and the result follows.

(2) First observe that

0 =
1

2
∆fs+

n

2
∆fP − n∇∇fP = tr(Q ◦ ((λ− P

2
− 1

n
)I −Q))

We note that the only possible eigenvalues for Q and ∇∇f are 0 and (λ− P
2
− 1

n
). To

exhibit radial flatness we utilize the formula

∇∇fQ+Q ◦ ((λ− P

2
− 1

n
)I −Q) = R(.,∇f)∇f +

1

2
∇.∇s+ n

2
∇.∇P,

which takes the form

R(.,∇f)∇f = ∇∇fQ = −∇2
∇f,.∇f.

Next, let E be a vector field such that ∇E∇f = 0, then

g(∇2
∇f,E∇f, E) = 0

and also for ∇E∇f = (λ− P
2
− 1

n
)E,

g(∇2
∇f,E∇f, E) = 0.

Thus g(R(E,∇f)∇f, E) = 0 for all eigenfields. So the metric is radially flat.
(3) In view of the soliton equation , one obtains

(∇XQ)(Y )− (∇YQ)(X) = −R(X, Y )∇f

(∇XQ)(Y, Z)− (∇YQ)(X,Z) = −g(R(X, Y )∇f, Z).
By the second Bianchi identity one infer

(∇XQ)(Y, Z)− (∇YQ)(X,Z) = divR(X, Y, Z) = 0,

as the curvature is harmonic. Thus R(X, Y )∇f = 0. In particular sec(E,∇f) = 0.
The expanding situation is similar.

Proposition 3.6. Consider a gradient conformal Ricci soliton

Ric+Hessf = (λ− (
P

2
− 1

n
))g

with constant scalar curvature, constant conformal pressure, λ ̸= 0 and a nontrivial
f . For a suitable constant α

f + α =
1

2
(λ− P

2
− 1

n
)r2,

where r is a smooth function whwnever ∇f ̸= 0 and satisfies

|∇r| = 1.

Proof. We note that

1

2
(s+ |∇f |2) = (λ− P

2
− 1

n
)∇f.

The above implies

s+ |∇f |2 − 2(λ− P

2
− 1

n
)∇f = constant
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By addition of suitable constant to f we see that

|∇f |2 = 2(λ− P

2
− 1

n
)f.

Therefore, f and λ have the same sign and f and Df have same zeros. Let us define
r such that

f =
1

2
(λ− P

2
− 1

n
)r2,

then

∇f = (λ− P

2
− 1

n
)r∇r

and

2(λ− P

2
− 1

n
)f = |∇f |2 = 2(λ− P

2
− 1

n
)f |∇r|2

This provides a characterization of gradient conformal Ricci soliton.

Theorem 3.7. A gradient conformal Ricci soliton

Ric+Hessf = (λ− (
P

2
+

1

n
))g

is rigid if it is radially flat and has constant scalar curvature and constant conformal
pressure.

Proof. Consider the cases for which λ is positive, negative, zero. For the first case,
i.e., λ > 0 from the soliton equation

Q+ S = (λ− P

2
− 1

n
)I,

S = ∇∇f,
we have

∇∇fS + S ◦ (S − (λ− P

2
− 1

n
)I) = 0,

∇∇fQ+Q ◦ ((λ− P

2
− 1

n
)I −Q) = 0.

Consoder that f = 1
2
(λ − P

2
− 1

n
)r2 where r is a nonnegative distance function. The

minimum set for f

N = {x : f(x) = 0}
is also written as

N = {x ∈M : ∇f(x) = 0}.
This expresses that S ◦ (S − (λ− P

2
− 1

n
)I) = 0 on N .

If r > 0 we note that the smallest eigenvalue for S is absolutely continuous and
therefore satisfies the differential equation.

D∇fνmin = νmin(λ− P

2
− 1

n
− νmin).

We claim that νmin ≥ 0. Using r > 0 as an independent coordinate and ∇f =
(λ− P

2
− 1

n
)r∇r yields

δrνmin =
1

λr
νmin((λ− P

2
− 1

n
)− νmin).
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This equation is solvable by separation of variables. In particular, νmin → −∞ in
finite time provided νmin < 0 somewhere. The above is not agreeing with smoothness
of f . Thus we infer that νmin ≥ 0 and consequently f is convex.

As we know f is convex, the minimum set N must be totally convex. It is also
known that on N the eigenvalues of ∇∇f are 0 and (λ− P

2
− 1

n
) with constant mul-

tiplicities. Observing that the rank of ∇∇f is constant, we have N is a submanifold
whose tangent space is Ker(∇∇f). In other words it shows that N is a totally geodesic
submanifold.

When λ > 0 the minimum set N is in fact compact as it must be an Einstein
manifold.

The normal exponential map

exp : v(N) →M

follows the path along the integral curves for ∇f or ∇r and therefore is a diffeomor-
phism.

By the fundamental equations (see [17]) the metric is completely determined as it
is radially flat and that N is totally geodesic. From this it follows that the bundle is
flat and hence of the type N ×Γ R.

Proof for other values of λ is similar.

4. Scalar curvature of gradient conformal Ricci soliton satisfying Poisson
equation

Theorem 4.1. A compact connected gradient conformal Ricci soliton (Mn, g, f, λ)
with λ > (P

2
+ 1

n
) and normalized potential function is trivial if and only if

(fs)av ≤
1

2
n2(λ− (

P

2
+

1

n
)),

and conformal pressure is constant, where s is the scalar curvature of (M, g).

Proof. Consider an n-dimensional compact and connected gradient conformal Ricci
soliton (M, g, f, λ) with λ > (P

2
+ 1

n
). By virtue of the equations (2) and (7) we get

(9)
1

2
∆f 2 = f∆f + ||∇f ||2 = (n+ 2)(λ− (

P

2
+

1

n
))f − fs− s,

which in view of (8) gives

(10)

∫
M

fs = (λ− (
P

2
+

1

n
))(n+ 2)

∫
M

(f − n

(n+ 2)
).

The equations (7) and (8) imply∫
M

(f − n

2
) =

1

2(λ− (P
2
+ 1

n
))

∫
M

||∇f ||2,

which together with equation (9) yields

(11)

∫
M

fs =
1

2
n2(λ− (

P

2
+

1

n
))V ol(M) +

n+ 2

n

∫
M

||∇f ||2.
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For (fs)av ≤ 1
2
n2(λ− (P

2
+ 1

n
)) ine has

(12)

∫
M

fs ≤ 1

2
n2(λ− (

P

2
+

1

n
))V ol(M).

By (11) and (12), we infer
∫
M
||∇f ||2 = 0, which shows that the potential function f

is a constant. As a result, it follows from (1) that M is Einstein. Hence, the soliton
is trivial.

Conversely, suppose the solitonn with λ > (P
2
+ 1

n
) is trivial, then s = n(λ−(P

2
+ 1

n
))

and f is a constant. By (7) we obtain f = s
2(λ−(P

2
+ 1

n
)
. So, we have (fs)av =

1
2
n2(λ−

(P
2
+ 1

n
)). Hence, the result follows.

Theorem 4.2. Suppose (M, g, f, λ) is an n-dimensional compact connected gradient
conformfal Ricci soliton having λ > (P

2
+ 1

n
) and let σ = (λ−(P

2
+ 1

n
))(n(λ−(P

2
+ 1

n
))−s).

If the scalar curvature s satisfies the Poisson equation

∆φ = σ,

then either M is trivial or the first nonzero eigenvalue λ1 of the Laplace operator ∆
of M satisfies λ1 ≤ (λ− (P

2
+ 1

n
)), provided the conformal pressure is constant.

Proof. Suppose (M, g, f, λ) is an n-dimensional compact and connected gradient
conformal Ricci soliton having λ > (P

2
+ 1

n
). Consider the scalar curvature s satisfies

the Poisson equation

(13) ∆φ = σ,

with φ = (λ−(P
2
+ 1

n
))(n(λ−(P

2
+ 1

n
))−s). It is seen the the function ψ = 1

2
(||∇f ||2+s)

agrees with

(14) ψ = (λ− (
P

2
+

1

n
))f

due to equation (7). The above equation with (2) yields

∆ψ = (λ− (
P

2
+

1

n
))(n(λ− (

P

2
+

1

n
))− s) = σ.

Therefore, both s and ψ are the solutions of the Poisson equation (13). So, we get
s = ψ + c for some constant c. As a result, we obtain

∇s = ∇ψ = (λ− (
P

2
+

1

n
))∇f − 1

2
∇Pf.

As the conformal pressure is constant, we obtain

(15) ∇s = (λ− (
P

2
+

1

n
))∇f.

In view of the minimum principle of λ1 and the equation (8), we infer

(16)

∫
M

||∇s||2 ≥ λ1

∫
M

(n(λ− (
P

2
+

1

n
))− s)2.

Again, from equation (8) it is seen that∫
M

(n(λ− (
P

2
+

1

n
))− s)2 =

∫
M

(s2 − n2(λ− (
P

2
+

1

n
))2).
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As a result, the inequality (16) takes the form

(17)

∫
M

||∇s||2 ≥ λ1

∫
M

(s2 − n2(λ− (
P

2
+

1

n
))2).

Since the scalar curvature s agrees with (13) with σ = (λ−(P
2
+ 1

n
))(n(λ−(P

2
+ 1

n
))−s),

we have

(18) s∆s = (λ− (
P

2
+

1

n
))(n(λ− (

P

2
+

1

n
))s− s2).

Integrating both sides of the above and using (8), we have∫
M

||∇s||2 = (λ− (
P

2
+

1

n
))

∫
M

(s2 − n2(λ− (
P

2
+

1

n
))2),

which together with the inequality (17) yields

(λ1 − (λ− (
P

2
+

1

n
)))

∫
M

(n2(λ− (
P

2
+

1

n
))2 − s2) ≥ 0.

It is seen that by (2), one has

n2(λ− (
P

2
+

1

n
))2 − s2 = (n(λ− (

P

2
+

1

n
)) + s)∆f = n(λ− (

P

2
+

1

n
))∆f + s∆f,

which on insertion in the above inequality gives

(19) (λ1 − (λ− (
P

2
+

1

n
))

∫
M

(s−∆f) ≥ 0.

From (2), (19), and (18) we have

0 ≤ (λ1 − (λ− (
P

2
+

1

n
)))

∫
M

(s∆f)

= (λ1 − (λ− (
P

2
+

1

n
)))

∫
M

s(n(λ− (
P

2
+

1

n
))− s)

=
λ1 − (λ− (P

2
+ 1

n
))

(λ− (P
2
+ 1

n
))

∫
M

||∇s||2.

By combining the above equation with (15), we infer

(λ− (
P

2
+

1

n
))(λ1 − (λ− (

P

2
+

1

n
)))

∫
M

||∇f ||2 ≤ 0,

which implies that either λ1 ≤ (λ− (P
2
+ 1

n
)) or (M, g, f, λ) is trivial.

This completes the proof.
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