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A FOURTH-ORDER ITERATIVE BOUNDARY VALUE PROBLEM

WITH CONJUGATE BOUNDARY CONDITIONS

Zach Whaley∗, Eric Kaufmann, and Nickolai Kosmatov

Abstract. We establish conditions on the function f for the existence and unique-
ness of solutions for the fourth-order iterative differential equation

x(4)(t) = f(t, x(t), x[2](t), ..., x[m](t)), a < t < b

m ≥ 2, with solutions subject to one of the boundary conditions

x(a) = c, x′(a) = 0, x′′(a) = 0, x(b) = d,

x(a) = c, x′(a) = 0, x(b) = d, x′(b) = 0,

x(a) = c, x(b) = d, x′(b) = 0, x′′(b) = 0.

We assume that a, b, c, d are constants such that a < c < d < b. The main tool
employed is Schauder’s Fixed-Point Theorem.

1. Introduction

The study of state-dependent differential equations has a long history with applica-
tion in climate models, economic models, electrodynamical systems, infectious disease
models, mechanics, neural networks, population dynamics, and various other fields.
See, for example, [2, 4, 6, 8, 9, 13, 14] and the references therein. Iterative differential
equations are a special case of state-dependent differential equations. For a sampling
of results on iterative differential equations, see [3, 5, 7, 10–12, 15, 17] and references
therein.

The goal of this current work is to broaden the results found from Kaufmann
and Whaley [12]. In that manuscript, the authors gave sufficient conditions for the
existence and uniqueness of solutions for the fourth-order iterative boundary value
problem,

(1.1) x(4)(t) = f(t, x(t), x[2](t), ..., x[m](t)), a < t < b

m ≥ 2, that satisfy one of the following sets of boundary conditions

(1.2) x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a,

(1.3) x(−a) = −a, x(a) = a, x′(a) = b, x′′(a) = c.
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Here x[2](t) = x
(
x(t)

)
, and for j = 3, ...,m, x[j](t) = x

(
x[j−1]

)
(t). To ensure that

x : [−a, a] → [−a, a], the authors restricted f to be of one sign and put bounds
on f so that the equivalent integral operators of (1.1), (1.2) and (1.1), (1.3) were
monotonic.

In this paper we consider existence and uniqueness of solutions for the fourth-order
iterative problem (1.1), with solutions satisfying one of the boundary conditions:

(1.4) x(a) = c, x′(a) = 0, x′′(a) = 0, x(b) = d,

(1.5) x(a) = c, x′(a) = 0, x(b) = d, x′(b) = 0,

(1.6) x(a) = c, x(b) = d, x′(b) = 0, x′′(b) = 0,

where a < c < d < b. We assume throughout that f : [a, b] × R → R is continuous.
We allow f to change signs and, by using a modification of the technique in [11], show
directly that the associated integral operators map [a, b] into [a, b]. As a consequence,
the iterates x[j](t), j = 2, 3, . . . , are well-defined.

The manuscript is organized as follows. In Section 2, we will rewrite (1.1), (1.4) as
an integral equation, and provide conditions under which the solution of the integral
equation will be a solution of the boundary value problem. We will also list properties
of the Green’s function and of the norm of the difference of two iterative functions.
In Section 3, we will state and prove results concerning the existence and uniqueness
of solutions of (1.1), (1.4). In Section 4, we present the equivalent inversion of (1.1),
(1.5) and (1.1), (1.6) and state, without proof, the analogous existence and uniqueness
results. Examples are included to illustrate our results.

2. Preliminaries

Our first goal of this section is to rewrite (1.1), (1.4) as an integral equation.
We will accomplish this by first inverting the non-homogeneous equation with ho-
mogeneous boundary conditions, and then solving the homogeneous equation with
non-homogeneous boundary conditions. The inversion of (1.1), (1.4) will be the sum
of the two expressions. Later in this section, we state two key lemmas that will be
used sections 3 and 4. One will involve the Green’s function and the other deals with
the norm of the difference of iterates. Lastly, we state a version of Schauder’s fixed
point theorem.

We will begin the inversion by considering

x(4)(t) = g(t), a ≤ t ≤ b,(2.1)

x(a) = x′(a) = x′′(a) = x(b) = 0.(2.2)

Using the same method found in [12], it can be shown that x is a solution to (2.1),
(2.2), if, and only if, x satisfies the integral equation

(2.3) x(t) =

∫ b

a

G(t, s)g(s) ds

where

(2.4) G(t, s) =
−1

6(b− a)3

{
(b− s)3(t− a)3 − (b− a)3(t− s)3, a ≤ s ≤ t ≤ b,
(b− s)3(t− a)3, a ≤ t ≤ s ≤ b.
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It is easy to show that if x is a solution of,

x(4)(t) = 0,

x(a) = c, x′(a) = 0, x′′(a) = 0, x(b) = d,

then x is given by

(2.5) x(t) =
d− c

(b− a)3
(t− a)3 + c.

Consequently, if x is a solution of (1.1), (1.4), then x will then be the sum of (2.3)
and (2.5). That is, x is a solution of the integral equation

x(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds(2.6)

+c+
d− c

(b− a)3
(t− a)3,

where G(t, s) is given in (2.4).
In order for solutions of the boundary value problems to be well-defined, we also

require the image of x be in the interval [a, b]; that is, in order for x(x[m])(t) to be
defined, we need a ≤ x(t) ≤ b for all t ∈ [a, b]. Knowing this, we can show that if
x ∈ C[a, b], satisfies a ≤ x(t) ≤ b for all t, and satisfies the integral equation (4.2),
then it satisfies (1.1), (1.4). This gives us the following lemma.

Lemma 2.1. The function x ∈ C4[a, b] is a solution of (1.1), (1.4) if and only if
x ∈ C[a, b] satisfies a ≤ x(t) ≤ b and the integral equation

x(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds

+
d− c

(b− a)3
(t− a)3 + c,

where G(t, s) is defined in (2.4).

To prove the existence and uniqueness of solutions of (1.1), (1.4), we will need to
bound our Green’s functions G(t, s). For that, we will use the following lemma.

Lemma 2.2. The Green’s function given in (2.4) satisfies the following inequality:

0 ≤ |G(t, s)| ≤ (b− a)3

3
.

Proof. First note that g1(t) = (b−s)3(t−a)3, a ≤ t ≤ s ≤ b is an increasing function
of t. So (b − s)3(t − a)3 ≤ (b − s)3(s − a)3. We know that maxs∈[a,b](b − s)3(s − a)3

occurs at s = a+b
2
, and is given by (b−a)6

64
. Thus, (b−s)3(t−a)3

6(b−a)3
≤ (b−a)3

6·64 ≤ (b−a)3

3
.

Now, consider g2(s) = (b − s)3(t − a)3 − (b − a)3(t − s)3, a ≤ s ≤ t ≤ b. Then,
|g2(s)| ≤ (b− s)3(t− a)3 + (b− a)3(t− s)3 ≤ (b− a)6 + (b− a)6 = 2(b− a)6. Hence,

1
6(b−a)3

|(b− s)3(t− a)3 − (b− a)3(t− s)3| ≤ 1
6(b−a)3

· 2(b− a)6 = (b−a)3

3
. Consequently,

|G(t, s)| ≤ (b−a)3

3

We use the Banach space Φ = (C[a, b], ∥ · ∥), where the norm is given by ∥x∥ =
maxt∈[a,b] |x(t)|. Define the operator T1 : C[a, b] → C[a, b] by
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(T1x)(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds(2.7)

+
d− c

(b− a)3
(t− a)3 + c

where G(t, s) is defined in (2.4). We will also need the subspace

Φ(J,N) = {x ∈ Φ : ∥x∥ ≤ J, |x(t2)− x(t1)| ≤ N |t1 − t2|, t1, t2 ∈ [a, b]},
as well as the following lemma, the proof of which can be found in [16], [18].

Lemma 2.3. If x, y ∈ Φ(J,N), then∣∣x[m](t1)− x[m](t2)
∣∣ ≤ Nm|t1 − t2|,m = 0, 1, 2, ...,

for all t1, t2 ∈ [a, b] and∥∥x[m](t1)− x[m](t2)
∥∥ ≤

m−1∑
j=0

N j∥x− y∥.

We end this section by stating a version of Schauder’s fixed point theorem which
can be found in [1].

Theorem 2.4 (Schauder). Let A be a nonempty compact convex subset of a Ba-
nach space and let T : A → B be continuous, where B is a compact subset of A.
Then T has a fixed point in B.

3. Existence and Uniqueness Results for (1.1), (1.4)

In this section we will state and prove our existence and uniqueness results for
(1.1), (1.4). Let T1 : C[a, b] → C[a, b] be defined as (2.7). Throughout the section we
will assume the following conditions hold.

(H1) There exists αℓ ∈ L[a, b], ℓ = 1, 2, . . . ,m, such that

|f(t, x1, . . . , xm)− f(t, y1, . . . , ym)| ≤
m∑
ℓ=1

αℓ(t)∥xℓ − yℓ∥

for all t ∈ [a, b] and xi, yi ∈ R, i = 1, 2, . . . ,m.

(H2) There exists a K1 ∈ R such that 0 < K1 < min
{

12(b−d)
(b−a)4

, 12(c−a)
(b−a)4

}
and

−K1 ≤ f
(
t, u1, u2, ..., um

)
≤ K1

for all t ∈ [a, b], and for all ui ∈ R, i = 1, 2, ...,m.

Theorem 3.1. Suppose that condition (H1) and (H2) holds. Then there exists a
solution to (1.1), (1.4).

Proof. LetR = max{|a|, |b|}. Consider the convex, compact nonempty set Φ(R,N),
where

(3.1) N =
3|d− c|
(b− a)

+K1

(
17(b− a)3

12

)
.
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We first need to prove that T1 : Φ(R,N) → Φ(R,N). We do this by first showing
that a ≤ (T1x)(t) ≤ b for all t ∈ [a, b]. By (H2), we have

(T1x)(t) = − (t− a)3

6(b− a)3

∫ b

a

(b− s)3f(s) ds+
1

6

∫ t

a

(t− s)3f(s) ds

+
d− c

(b− a)3
(t− a)3 + c

≤ K1

6(b− a)3
(t− a)3

∫ b

a

(b− s)3 ds+
K1

6

∫ t

a

(t− s)3 ds

+
d− c

(b− a)3
(t− a)3 + c

≤ K1(b− a)

24
(t− a)3 +

K1

24
(t− a)4 +

d− c

(b− a)3
(t− a)3 + c

≤ K1
(b− a)4

12
+ d.

Using the inequality in (H2), we see that.

K1
(b− a)4

12
+ d ≤ 12(b− d)

(b− a)4
(b− a)4

12
+ d ≤ b

for all t ∈ [a, b]. That is, (Tx)(t) ≤ b. A similar argument can be used to show that
(Tx)(t) ≥ a. Therefore, for all t ∈ [a, b], a ≤ (Tx)(t) ≤ b. Consequently,

(3.2) |T (x(t))| ≤ max {|a|, |b|} = R

To complete the proof that T1 : Φ(R,N) → Φ(R,N), we need to show that for
given t1, t2 ∈ [a, b],

∣∣(T1x)(t2) − (T1x)(t1)
∣∣ ≤ N |t2 − t1|, where N is defined as above.

We may assume, without loss of generality, that t2 ≤ t1. To this end, first note that

|(T1x)(t2) − (T1x)(t1)|

=

∫ b

a

∣∣G(t2, s)−G(t1, s)
∣∣ ∣∣f(s, x(s), x[2](s), . . . , x[m](s)

)∣∣ ds
+

(d− c)

(b− a)3
(
(t2 − a)3 − (t1 − a)3

)
K1

∫ b

a

∣∣G(t2, s)−G(t1, s)
∣∣ ds+ 3(d− c)

(b− a)
|t2 − t1|.

We need to bound
∫ b

a
|G(t2, s)−G(t1, s)| ds by a constant time |t2− t1|. Since t2 ≤ t1,

we can rewrite the integral as∫ b

a

∣∣G(t2, s)−G(t1, s)
∣∣ ds ≤

∫ t1

a

∣∣G(t2, s)−G(t1, s)
∣∣ ds

+

∫ t2

t1

∣∣G(t2, s)−G(t1, s)
∣∣ ds

+

∫ b

t2

∣∣G(t2, s)−G(t1, s)
∣∣ ds.

We consider each term separately.
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Given that t1 ≤ t2, we have using the definition of G(t, s) that the first term on
the right satisfies∫ t1

a

|G(t2, s) − G(t1, s)| ds

≤ 1

6(b− a)3

∫ t1

a

∣∣(b− s)3
(
(t2 − a)3 − (t1 − a)3

)∣∣
+(b− a)3

∣∣(t2 − s)3 − (t1 − s)3
∣∣ ds

≤ 1

2(b− a)

(
(b− a)4

4
− (b− t1)

4

4

)
|t2 − t1|

+
(b− a)3

2
|t2 − t1|

≤
[
(b− a)3

8
+

(b− a)3

2

]
|t2 − t1|

=
5(b− a)3

8
|t2 − t1|.

From Lemma 2.2, we obtain,∫ t2

t1

∣∣G(t2, s)−G(t1, s)
∣∣ ds ≤

∫ t2

t1

|G(t2, s)−G(t1, s)| ds

≤
∫ t2

t1

2
(b− a)3

3
ds

=
2(b− a)3

3
|t2 − t1|.

And finally,∫ b

t2

|G(t2, s) − G(t1, s)| ds

≤ 1

6(b− a)3

∫ b

t2

∣∣(b− s)3
(
(t2 − a)3 − (t1 − a)3

)∣∣ ds
≤ 1

6(b− a)3

(
(b− t2)

4

4
(3(b− a)2)

)
|t2 − t1|

≤ (b− a)3

8
|t2 − t1|.

Thus, ∫ b

a

|G(t2, s)−G(t1, s)| ds ≤
17(b− a)3

12
|t2 − t1|.

Consequently, we have,

|(T1x)(t2)− (T1x)(t1)| ≤
(
|3(d− c)|
(b− a)

+K1
17(b− a)3

12

)
|t2 − t1|

= N |t2 − t1|.(3.3)

and so, T1 : Φ(R,N) → Φ(R,N).
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From (3.2) and (3.3) and an application of the Arzelà-Ascoli Theorem, the set
T1 (Φ(R,N)) is precompact. It follows from (H1) that,

|(T1x)(t)− (T1y)(t)| ≤
2(b− a)3

3

∫ b

a

m∑
ℓ=1

αℓ(s) ds∥x[ℓ] − y[ℓ]∥.

From here, standard methods can be used to show that T1 is continuous. Hence, by
Theorem 2.4 there exists a fixed point of the operator T1. According to Lemma (2.1),
this fixed point is a solution of (1.1), (1.4)

Example 3.2. Consider the following boundary value problem with parameter k.

x(4)(t) = kt2 cos(x[2](t))(3.4)

x(0) =
π

3
, x′(0) = x′′(0) = 0, x(π) =

π

2
.(3.5)

Here, a = 0, b = π, c = π
3
, and d = π

2
. Notice a < c < b and a < d < b. Let α1(t) = 0

and α2(t) = kt2. Then,

|f(t, x1, x2)− f(t, y1, y2)| ≤ α2(t)|x2 − y2|
for all t ∈ [0, π]. Also, 0 ≤ f(t, x, x[2]) ≤ kπ2 = K1. By Theorem 3.1, if K1 <

min
{

12(b−d)
(b−a)4

, 12(c−a)
(b−a)4

}
= 12(c−a)

(b−a)4
= 4

π3 then there exists a solution of (3.2), (3.3). Since

K1 = kπ2, we have that there exists a solution of (3.2), (3.3) for all 0 < k < 4
π5 ≈

1.30711× 10−2.

We are now ready for our uniqueness result.

Theorem 3.3. Suppose that (H1) and (H2) hold and that

(3.6)
2(b− a)3

3

m∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk < 1.

Then, there exists a unique solution to (1.1), (1.4).

Proof. By Theorem 3.1 and Lemma 2.1, there exists a solution of (1.1), (1.4), which
is a fixed point of the mapping T defined in (2.7). Assume x and y are two distinct
solutions of (1.1), (1.4). Then, by (H2) and Lemma 2.3, we have for all t ∈ [a, b],

∥x− y∥ = |(Tx)(t)− (Ty)(t)|

=

∣∣∣∣∫ b

a

G(t, s)f(s, x, ...) ds−
∫ b

a

G(t, s)f(s, y, ...) ds

∣∣∣∣
≤

∫ b

a

|G(t, s)||f(s, x, ...)− f(s, y, ...)| ds

≤ 2(b− a)3

3

∫ b

a

m∑
ℓ=1

αℓ(s)∥x[ℓ] − y[ℓ]∥ ds

≤

(
2(b− a)3

3

∫ b

a

m∑
ℓ=1

αℓ(s)
l−1∑
k=0

Nk ds

)
∥x− y∥

where N is given in (3.1). Since (3.6) holds, we arrive at the contradiction

∥x− y∥ < ∥x− y∥.
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Hence x = y, and our fixed point is unique.

Example 3.4. To illustrate our uniqueness result we again consider the boundary
value problem (3.2), (3.3). As in Example 3.2, α1(t) = 0 and α2(t) = kt2. The left side
of (3.6) becomes

2(b− a)3

3

2∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk =
2π3

3

∫ π

0

ks2 ds (1 +N)

=
2π6

9
(1 +N)k.

As defined in Theorem 3.1, N = 3|d−c|
(b−a)

+K1

(
17(b−a)3

12

)
. Since K1 = kπ2 N = 1

2
+ 17π5

12
k.

Thus,

2π6

9
(1 +N)k =

2π6

9

(
3

2
+

17π5

12
k

)
k

=
π6

3
k +

17π11

54
k2.

According to Theorem 3.3, (3.2), (3.3) will have a unique solution when π6

3
k+ 17π11

54
k2 <

1. Solving for k yields,
17π11

54
k2 +

π6

3
k − 1 < 0.

We can apply the quadratic equation to obtain

k <
3(
√
102 + 9π − 3

√
π)

17π
11
2

≈ 1.98346× 10−3.

Therefore, there exists a unique solution to (3.2), (3.3).

4. Other Results

In this section we give the corresponding results from Section 3 for the boundary
value problems (1.1), (1.5) and (1.1), (1.6). The proof of the results in this section are
similar to those found in Section 3. As such, we only point out the main differences
in the proof. We begin by considering the boundary value problem (1.1), (1.5).

As in section 2, we can show that x ∈ C[a, b] is a solution of (1.1), (1.5), if and
only if x satisfies the integral equation

x(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds(4.1)

+c+
6(d− c)

2(b− a)2
(t− a)2 − 2(d− c)

(b− a)3
(t− a)3,

where

(4.2) G(t, s) =
−1

6(b− a)3


(b− t)2(a− s)2(2ab− 3as+ ta+ bs− 3bt+ 2ts),

a ≤ s ≤ t ≤ b,
(b− s)2(a− t)2(2ab+ as− 3ta− 3bs+ bt+ 2ts),

a ≤ t ≤ s ≤ b.
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Define the operator T2 : C[a, b] → [a, b] by

(T2x)(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds

+c+
6(d− c)

2(b− a)2
(t− a)2 − 2(d− c)

(b− a)3
(t− a)3,

where G(t, s) is given as in (4.2). The following lemma dealing with the bound on the
Green’s function given in (4.2) is straightforward to prove.

Lemma 4.1. The Green’s function given in (4.2) satisfies the following inequality:

0 ≤ |G(t, s)| ≤ (b− a)3

3
.

In addition to (H1), we will require that the following condition hold.

(H3) There exists a K2 ∈ R such that 0 < K2 < min
{

12(b−d)
7(b−a)4

, 12(c−a)
7(b−a)4

}
and

−K2 < f(t, u1, u2, ..., um) < K2

for all t ∈ [a, b] and ui ∈ R, i = 1, 2, . . . ,m.

Theorem 4.2. Suppose that conditions (H1) and (H3) hold. Then there exists a
solution to (1.1), (1.6).

Proof. The space needed in this case is Φ(R,M), where M = 6(d−c)
(b−a)

+ 6(d−c)(b+a)
(b−a)2

+

K2

(
7(b−a)3

24

)
. It can then be shown that T2 maps Φ(R,M) back into itself and is

continuous in a similar manner to Theorem 3.1. This proves the existence of a fixed
point, and hence a solution of (1.1), (1.5).

Example 4.3. Consider again the boundary value problem found in Example 3.2,
with the boundary conditions changed to match (1.1), (1.5).

x(4)(t) = kt2 cos(x[2](t))(4.3)

x(0) =
π

3
, x′(0) = x′(π) = 0, x(π) =

π

2
,(4.4)

Here, K2 = kπ2. So, for all 0 < K2 < 12(c−a)
7(b−a)4

, or k < 4
7π5 ≈ 1.86729 × 10−3, there

exists a solution to (4.3), (4.4), according to Theorem 4.2.

We now turn to the uniqueness result.

Theorem 4.4. Suppose that (H1) and (H3) hold and that

(4.5)
2(b− a)3

3

m∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk < 1.

Then, there exists a unique solution to (1.1), (1.5).

Example 4.5. To illustrate our uniqueness result, again consider the boundary
value problem (4.3), (4.4). Recall from Example 4.1 that K2 = kπ2. The left side of
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(4.5) becomes

2(b− a)3

3

2∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk =
2π3

3

∫ π

0

ks2 ds(1 +N)

=
2π6

9
(1 +N)k.

As defined in Theorem 4.2, N = 6(d−c)
(b−a)

+ 6(d−c)(b+a)
(b−a)2

+ K2

(
7(b−a)3

24

)
. In this case,

N = 2 + 7π5

24
k. Thus,

2π6

9
(1 +N)k =

2π6

9

(
3 +

7π5

24
k

)
k

2π6

3
k +

7π11

108
k2.

Preceding in a similar manner to Example 3.4,

7π11

108
k2 +

2π6

3
k − 1 < 0

k <
6(
√
51 + 36π − 6

√
π)

7π
11
2

≈ 1.49385× 10−3

Therefore, there exists a unique solution to (4.3), (4.4), according to Theorem 4.4.

Finally, we give our results for (1.1), (1.6).
Computations similar to Section 2 show that x(t) must satisfy the integral equation

x(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds(4.6)

+d+
c− d

(b− a)3
(b− t)3,

where

(4.7) G(t, s) =
−1

6(b− a)3

{
(b− t)3(s− a)3, a ≤ s ≤ t ≤ b,
(b− t)3(s− a)3 − (b− a)3(s− t)3, a ≤ t ≤ s ≤ b.

The Green’s function above enjoys the same bound found in Lemma 2.2.
As done previously, we define the operator T3 : C[a, b] → C[a, b] as,

(T3x)(t) =

∫ b

a

G(t, s)f(s, x(s), x[2](s), ..., x[m](s)) ds

+d+
c− d

(b− a)3
(b− t)3,

where G(t, s) is defined as in (4.7).
Beginning with the following assumption in addition to (H1), our existence and

uniqueness results for (1.1), (1.6) are as follows.

(H4) There exists a K3 ∈ R such that 0 < K3 < min
{

12(b−c)
(b−a)4

, 12(d−a)
(b−a)4

}
and

−K3 < f(t, u1, u2, ..., um) < K3

for all t ∈ [a, b] and ui ∈ R, i = 1, 2, . . . ,m.
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Theorem 4.6. Suppose that conditions (H1) and (H4) hold. Then there exists a
solution to (1.1), (1.6).

Proof. For this proof, the space needed is Φ(R,M) where M = 3|c−d|
(b−a)

+L
(

17(b−a)3

12

)
.

The rest of the proof follows the same steps as Theorem 3.1.

Example 4.7. Once again we look at the boundary value problem,

x(4)(t) = kt2 cos(x[2](t))(4.8)

x(0) =
π

3
, x(π) =

π

2
, x′(π) = x′′(π) = 0.(4.9)

With K3 = kπ2, whenever 0 < K3 < 12(d−a)
(b−a)4

= 6
π5 ≈ 1.96066 × 10−2, there exists a

solution to (4.8), (4.9) according to Theorem (4.6).

Theorem 4.8. Suppose that (H1) and (H4) hold and that

(4.10)
2(b− a)3

3

m∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk < 1.

Then, there exists a unique solution to (1.1), (1.6).

Example 4.9. Again consider the boundary value problem (4.8), (4.9). Similar to
our previous examples, α1(t) = 0 and α2(t) = kt2. The left side of (4.10) becomes

2(b− a)3

3

2∑
ℓ=1

∫ b

a

αℓ(s) ds
ℓ−1∑
k=0

Nk =
2π3

3

∫ π

0

ks2 ds(1 +N)

=
2π6

9
(1 +N)k.

As defined in Theorem 4.6, N = 3|c−d|
(b−a)

+K3

(
17(b−a)3

12

)
. In this case, N = 1

2
+ 17π5

12
k.

Thus,

2π6

9
(1 +N)k =

2π6

9

(
3

2
+

17π5

12
k

)
k

=
π6

3
k +

17π11

54
k2.

Using the same methods as the previous two uniqueness examples, we find that,

k <
3(
√
102 + 9π − 3

√
π)

17π
11
2

≈ 1.98346× 10−3

for there to exist a unique solution to (4.8), (4.9).

Remark. The technique in this paper can not be used to show the existence or
uniqueness of the boundary value problem

x(4)(t) = f(t, x(t), x[2](t), ..., x[m](t)), a < t < b,(4.11)

x(a) = a , x′(a) = 0 , x(b) = b, x′(b) = 0.(4.12)

We note that as c → a or d → b in (1.4), then min
{

12(b−d)
7(b−a)4

, 12(c−a)
7(b−a)4

}
→ 0. Conse-

quently, K1 = 0 and condition (H3) becomes f ≡ 0. The existence and uniqueness of
solutions of (4.11), (4.12) remains an open problem.
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