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FINDING THE NATURAL SOLUTION TO f(f(x)) = exp(x)

William Paulsen

Abstract. In this paper, we study the fractional iterates of the ex-
ponential function. This is an unresolved problem, not due to a lack
of a known solution, but because there are an infinite number of so-
lutions, and there is no agreement as to which solution is “best.” We
will approach the problem by first solving Abel’s functional equation
α(ex) = α(x)+1 by perturbing the exponential function so as to pro-
duce a real fixed point, allowing a unique holomorphic solution. We
then use this solution to find a solution to the unperturbed problem.
However, this solution will depend on the way we first perturbed the
exponential function. Thus, we then strive to remove the dependence
of the perturbed function. Finally, we produce a solution that is in
a sense more natural than other solutions.

1. Background

The problem of fractional iteration dates back to 1826 with Niels
Abel [1], and expanded upon by Ernst Schröder [11] in 1871. In order to
solve the equation f(f(x)) = g(x) for general monotonically increasing
functions g(x), Abel considered the functional equation α(g(x)) = α(x)+
1. If α(x) is a monotonically increasing solution to this equation, then
α−1(x) is well defined, so we can produce the function f(x) = α−1(α(x)+
1/2). Then f(f(x)) = α−1(α(x) + 1) = g(x), so we have found the
“half-iterate” of a function. Similarly, we can find fractional iterates of
functions using the solution α(x). In fact, solving for α allows us to solve
many functional equations involving f(x). [8]
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The problem is that Abel’s solution is far from unique. Not only
can we add an arbitrary constant, but if p(x) is any periodic function
of period 1 such that p′(x) > −1, then α(x) + p(α(x)) will also be a
solution to Abel’s equation. (The condition p′(x) > −1 assures us that
the new solution will also be monotonic.)

In order to get a unique solution, we have to consider functions g(x)
which have a fixed point . We say that x0 is a fixed point of g(x) if
g(x0) = x0. Then if s = g′(x0) > 0 and g′(x0) 6= 1, we can solve the
Schröder equation

σ(g(x)) = sσ(x).

In fact, if g(x) is analytic at x0, with a Taylor series of

g(x) = x0 + s(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · · ,
then there will be a unique solution to the Schröder equation analytic
at x0 [6], normalized so that σ′(x0) = 1. Its series is given by

σ(x) = (x− x0)−
a2

s(s− 1)
(x− x0)2 +

2a22 + (1− s)a3
s(s− 1)(s2 − 1)

(x− x0)3

+
(5s3 − 3s2 − 2s)a2a3 − (5s2 + 1)a32 + (s3 − s4 + s2 − s)a4

s2(s− 1)(s2 − 1)(s3 − 1)
(x− x0)4

+ · · · .(1)

Note that the nth term of the series for σ(x) only depends on the first
terms up to an of g(x).

It is easy to convert a solution to Schröder’s equation to a solution to
Abel’s equation. If we let

α(x) =
ln(σ(x))

ln(s)
,

then

α(g(x)) =
ln(σ(g(x)))

ln(s)
=

ln(s σ(x))

ln(s)
=

ln(σ(x)) + ln(s)

ln(s)
= α(x) + 1.

If we use the normalized solution of Schröder’s equation, we get

α(x) =
ln(x− x0)

ln(s)
− a2
s(s− 1) ln(s)

(x− x0)

+
2a3(s− s2) + a22(3s− 1)

2s2(s− 1)(s2 − 1) ln(s)
(x− x0)2

+

(
a32(4s

2 − 10s3 + s− 1) + 3a2a3(4s
4 − 3s3 − 2s2 + s)

3s3(s− 1)(s2 − 1)(s3 − 1) ln(s)
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+
3a4(s

4 − s5 + s3 − s2)
3s3(s− 1)(s2 − 1)(s3 − 1) ln(s)

)
(x− x0)3

+ · · · .

Note that α(x) is discontinuous at the fixed point x0, which is to be
expected from observing Abel’s equation. Yet the series will converge
with a positive radius of convergence, so α(x)− ln(x− x0)/ ln(s) is ana-
lytic in a neighborhood of x0. But there is a simple trick for analytically
extending this function to a much larger region.

If 0 < g′(x0) < 1, then x0 is called an attractive fixed point, since for
points sufficiently close to x0, g(x0) will be closer. The basin of attraction
of x0 is the set of points for which the sequence

{x, g(x), g(g(x)), g(g(g(x))), . . . }
converges to x0. For any point in the basin of attraction, there is some
iterate of x which is within the radius of convergence of Eq. 1. Then
since

σ(gn(x)) = snσ(x),

where gn(x) denotes the nth iterate of g(x), and the left hand side is
defined from Eq. 1 and is holomorphic, so is the right hand side. A
similar approach can be used if g′(x0) > 1, except we consider the set of
points for which

{x, g−1(x), g−1(g−1(x)), g−1(g−1(g−1(x))), . . . }
converges to x0 for an appropriately defined g−1(x). We can call this set
the basin of repulsion.

If g′(x0) = 0, the fixed point at x0 is called superattracting . In par-
ticular, if

g(x) = x0 + c(x− x0)m +O((x− x0)m+ 1)

for m ≥ 2, then we can find an analytic solution [10] to Böttcher’s
equation

β(g(x)) = (β(x))m

in the neighborhood of the fixed point, with β(x0) = 0. If we then let
σ(x) = ln(β(x)), then σ(x) will solve Schröder’s equation with s = m,
although this introduces a logarithmic singularity at x0. Finally, letting

α(x) =
ln(σ(x))

ln s
=

ln(ln(β(x)))

lnm

would give us a solution to Abel’s equation.
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In particular, if g(x) is a polynomial of degree m > 1, we can consider
the point of ∞ to be a superattractive fixed point, using the transfor-
mation x = 1/t. If g(x) = a0 + a1x + a2x

2 + · · · amxm for m ≥ 4, then
β(x) can be given [2] by the Laurent series

β(x) = m−1
√
am

[
x +

am−1
mam

+
(1−m)a2m−1 + 2mamam−2

2m2a2mx

+
(2m2 − 3m+ 1)a3m−1 + 6(m−m2)amam−1am−2

6m3a3mx
2

+
6m2a2mam−3

6m3a3mx
2

+ · · ·
]
.(2)

Schröder’s equation can only be applied to a function with a fixed
point, because the derivative at the fixed point is part of the equation.
However, we can remove the dependence on s by considering the function

λ(x) =
σ(x)

σ′(x) ln s
.

Then since

σ′(g(x))g′(x) = [σ(g(x))]′ = [sσ(x)]′ = sσ′(x),

λ(g(x)) =
σ(g(x))

σ′(g(x)) ln s
=

sσ(x)g′(x)

σ′(g(x))g′(x) ln s
=

sσ(x)

sσ′(x) ln s
g′(x) = λ(x)g′(x),

we find that λ(x) solves Julia’s equation λ(g(x)) = λ(x)g′(x) [4]. At
either an attractive or repulsive fixed point, this produces an analytic
solution of Julia’s equation in the neighborhood of the fixed point:

λ(x) = ln(s)
[
(x− x0) +

a2
(s− 1)s

(x− x0)2 +
2(sa3 − a22)

(s− 1)s2(s+ 1)
(x− x0)3

+
(5s+ 4)a32 − (8s2 + 7s)a2a3 + 3(s3 + s2)a4

(s− 1)s3(s+ 1)(s2 + s+ 1)
(x− x0)4 + · · ·

]
.(3)

However, this is not the only analytic solution, since multiplying this
solution by a constant yields another solution. It is trickier to normalize
the solution to Julia’s equation, since to reconstruct a solution of Abel’s
equation from λ(x), we find that

α(x) = C

∫
1

λ(x)
dx
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for some constant C. If we normalize the solution to Julia’s equation so
that ∫ g(x)

x

1

λ(x)
dx = 1

for all x, then letting C = 1 will allow α(g(x)) = α(x) + 1.

2. Previous Attempts

Finding the fractional iteration of ex is related to the tetration prob-

lem, for which we define na = aa
··
a

, for which the a appears n times. To
extend the idea of tetration for fractional n, we need to find the frac-
tional iterates of g(x) = ax, in particular, the inverse to Abel’s function
α(x). Although ax has a real fixed point for a ≤ e1/e, there are no real
fixed points for a > e1/e. Hence, we cannot directly use the methods of
Schröder and Abel to find fractional iterates of ax. It is best if we first
concentrate on the fractional iterates of ex, with hopes of extending the
ideas to other ax later.

One of the earlier attempts to find a fractional interations of ex is by
Kneser [5], using the complex fixed points of ex, in particular two ap-
proximated by 0.3181315052 ± 1.3372357014i. If we compute the holo-
morphic solutions to Schröder’s equation centered at one of these fixed
points, we can create a solution to Abel’s equation for a portion of the
complex plane, which unfortunately is not real on the real axis. How-
ever, Kneser was able to find a conformal mapping which converted this
to a real analytic function that also solves Abel’s equation. Because this
solution utilizes the Riemann mapping theorem, it is extremely difficult
to evaluate numerically. At least it does prove the existence of a real
analytic solution. In [12], Kneser’s solution was proven to be the unique
solution that satisfies a certain uniqueness criterion.

The näıve approach is to assume that α(x) has a Maclaurin series of
the form

α(x) =
∞∑
n=0

bnx
n

and force the Maclaurin series for α(ex)−α(x)−1 to be term-wise equal
to 0. We can assume that b0 = −1 (so that α(1) = 0), and we find the
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other coefficients satisfy



1 1 1 1 1 · · ·
0 2 3 4 5 · · ·
1 2 9 16 25 · · ·
1 8 21 64 125 · · ·
1 16 81 232 625 · · ·
...

...
...

...
...

. . .

 ·


b1
b2
b3
b4
b5
...

 =



1
0
0
0
0
...

 .

The general pattern for the matrix is mi,j = ji−1 − j!δi−1,j, where δ is
the Kronecker delta. This gives us an infinite number of equations with
an infinite number of unknowns, which generally has an infinite number
of solutions. If we truncate the matrix to an n by n matrix, we will
get n equations with n unknowns, which can be solved to produce an
nth degree polynomial. But do these polynomials converge to a single
function?

At first the polynomials seem to converge to a function

α(x) ≈ −1 + 0.91594605x+ 0.24935461x2 − 0.1104647x2

− 0.09393627x3 + 0.0100031x4 + 0.0358979x5

+ 0.0065736x6 − 0.0123067x7 − 0.00638988x8 + 0.0032733x9

+ 0.0037691x10 + · · · ,(4)

but apparently the individual coefficients do not settle down beyond 7
or 8 places. Each polynomial solution gives an excellent approximation
to a solution to Abel’s equation, but the polynomials are not extremely
close to each other. Actually, this is not surprising, since there are an
infinite number of solutions to Abel’s equation, so there is no reason for
the polynomials to approach one particular solution.

We have a little better luck with Julia’s equation. If we force the
Maclaurin series

λ(x) =
∞∑
n=0

cnx
n

to satisfy λ(ex) = λ(x)ex, we find that, if we assume c0 = 1, the other
coefficients satisfy
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

1 1 1 1 1 · · ·
0 2 3 4 5 · · ·
−1 2 9 16 25 · · ·
−2 2 21 64 125 · · ·
−3 4 57 232 625 · · ·
...

...
...

...
...

. . .

 ·


c1
c2
c3
c4
c5
...

 =



0
1
1
1
1
...

 ,

where this time the pattern for the matrix is mi,j = ji−1 − (i− 1)!/(i−
j−1)!. This time the polynomials seem to converge to at least 16 places.
We then find that

λ(x) ≈ c0(1− 0.54447441943280002x+ 0.65825784804769422x2

− 0.145172228840706x3 + 0.0392401849104522x4

− 0.0092762942201873x5 + 0.00154819408904525x6

− 0.0001236550531523x7 + 0.00000869580079783x8

− 0.0000114674312172x9 + 0.00000225232705059x10

+ 0.0000013297632729x11 − 0.0000002546678364x12

− 0.000000257792910611x13 + 0.0000000285251852x14 + · · · )(5)

We can then numerically compute the value c0 ≈ 1.091767351258320992
such that

∫ 1

0
1/λ(x) dx = 1.

Unfortunately, it would be very difficult to prove that as we let n→
∞, the coefficients of the solutions converge to a single solution. Even if
they did, there would be a limit to the precision we could obtain simply
because of the complexity of solving n equations with n unknowns. So
although this seems to give us a natural solution that we are looking for,
it is impractical to use.

Another approach given in [13] is to consider the function ex−1, which
does have a fixed point at x = 0. Unfortunately, this fixed point is semi-
stable, since iterating negative values get closer to the fixed point, but
iterating positive values get further away from the fixed point. Schröder’s
equation does not work for the case s = 1, but for Julia’s equation, we
can take the limit as s→ 1 of Eq. 3 to obtain

λ(x) = a2(x−x0)2+(a3−a22)(x−x0)3+
3a32 − 5a2a3 + 2a4

2
(x−x0)4+· · · .

We can then plug in the coefficients for ex − 1 to produce

λ(x) ∼ x2

2
−x

3

12
+
x4

48
− x5

180
+

11x6

8640
− x7

6720
+

11x8

241920
+

29x9

1451520
− 493x10

43545600
+· · ·
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as x→ 0+.
It should be noted that this series actually has a zero radius of con-

vergence, hence it is written as an asymptotic series. Such series are not
useless, since they can be converted to a form that is convergent. For
example, we can convert the series into a convergent continued fraction

λ(x) =
x2

2

/(
1 +

x

6

/(
1 +

x

12

/(
1 +

x

20

/(
1− 19x

30

/(
1 +

472x

399

/
(

1− 8249x

62776

/(
1 + · · · .

We can compute ψ(x) =
∫

1/λ(x) dx to be

ψ(x) ∼ −2

x
+

ln(x)

3
− x

36
+

x2

540
+

x3

7776
− 71x4

435456
+

8759x5

163296000

+
31x6

20995200
− 183311x7

16460236800
+ · · · as x→ 0+,(6)

which converted to a continued fraction is

ψ(x) = −2

x
+

lnx

3
− x

36

/(
1 +

x

15

/(
1− 49x

360

/(
1 +

8425x

12348

/
(

1− 163067111x

693546000

/(
1 + · · · .(7)

Then for x > 0, ψ(x) will satisfy

ψ(ex − 1) = ψ(x) + 1.

It is known from [3] that since log(x + 1) is analytic in a neighborhood
of 0, then there will be a unique solution ψ in a neighborhood of 0 that
has the asymptotic relation in Eq. 6.

Of course this is not exactly the equation we are trying to solve. But
we can argue that there is a unique α(x) solving α(ex) = α(x) + 1 such
that α(x) ∼ ψ(x) as x → ∞. It is easy to extend ψ(x) analytically
to the positive real axis, since this axis is in the basin of attraction of
ln(x+ 1), the inverse of ex − 1.

Now, for a given x, we can compute α(x) by noting that

α(x) = α(ex)− 1 = α
(
ee

x)− 2 = α
(
ee

ex
)
− 3 = · · ·

If we express the iterated exponential function as expn(x), we have that

α(x) = α(expn(x))− n for all n.



Finding the natural solution to f(f(x)) = exp(x) 89

Since we are assuming that α(x) ∼ ψ(x) as x→∞, we have that

(8) α(x) = lim
n→∞

ψ(expn(x))− n.

By defining α(x) in this way, we get a unique solution to Abel’s equation
for which α(x) ∼ ψ(x) as x→∞. We also find that this α is real analytic
for real x.

With this definition, we find that α(1) ≈ −1.4419775343579015. But
we can add a constant to α so that α(1) = 0. This way, the inverse
function α−1(x) solves the tetration problem. The graph is shown in
Fig. 1.

Although this solution is often used, there are some drawbacks to this
method. First of all, it is inconsistent with the “natural” solution given
in Eq. 5. In this version, we find that α(1/2) − α(1) ≈ −0.498498375,
whereas using Eq. 8, we get α(1/2) − α(1) ≈ −0.497732466. Also, it
is time consuming to calculate ψ(x) accurately. The main strategy for
computing ψ(x) is to repeatedly apply ln(x + 1) until the argument is
close to 0, and then use the power series or continued fraction. However,
it takes about 10000 iterations of ln(x + 1) to get the argument to less
than 0.0001, because of the semi-attractive fixed point. Also, try this on
other exponential functions, such as ax − 1, we find that this the fixed
point at 0 switches to an attractive fixed point when a < e, resulting in
a discontinuity in the a variable if we compute the tetration.

Yet another solution is described in section 8 of [7]. If we inductively
define

h0(x) = x, hn(x) = x+ ehn−1(x−1) for n > 0,

then the sequences hn(x) rapidly converges to a function h∞(x), which
has a growth similar to tetration. We then define

g∞(x) = lim
n→∞

exp−n(h∞(x+ n)).

Finally, αg∞(x) = g−1∞ (x) solves Abel’s equation. Although calculating
g∞ is fairly easy, it is difficult to calculate the inverse function. Like the
previous solution, we are using the “helper function” h∞(x) which solves
a similar functional equation to Abel’s equation, and then use this to
find a solution to Abel’s equation with the same growth rate as x→∞.
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Figure 1. Graph of α(x), solving α(ex) = α(x) + 1

3. Perturbing the problem

Our strategy is to solve a slightly different problem that is much
easier. We consider adding a small perturbation ε(x) to the exponential
function so that ex + ε(x) will have a real fixed point. We require the
following properties to hold for ε(x):

• ε(0) = −1.
• ε(x) is analytic for all real numbers.
• ε′(x) > 0 for all x ≥ 0.
• lim
x→∞

ε(x) = 0.

Examples of such functions are −eax and −1/(x + 1)a for any pos-
itive constant a. These four properties will make x = 0 a fixed point
for g(x) = ex + ε(x), with g′(0) > 1. Also, g(x) will be real analytic
and monotonically increasing, and asymptotic to ex as x → ∞. These
are precisely the properties needed to ensure that Schröder’s functional
equation for g(x) has a unique normalized solution in the neighborhood
of zero, and can be analytically extended to the positive real axis. If we
convert this solution to a solution of Abel’s equation, we can call this
new function ψε(x). Thus, we have

ψε(e
x + ε(x)) = ψε(x) + 1, ψε(x) =

ln(x)

ln(1 + ε′(0))
+O(x) as x→ 0+.

We can now use this function to solve the main equation, namely
α(ex) = α(x) + 1. If we assume that α(x) ∼ ψε(x) as x → ∞, we will
produce the unique solution αε(x), given by
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(9) αε(x) = lim
n→∞

ψε(expn(x))− n.

Furthermore, since ψε(g
−1(x)) = ψε(x)− 1, we also have that

(10) αε(x) = lim
n→∞

ψε(g
−n(expn(x))).

This will be a solution to Abel’s equation, but it will depend upon
the perturbation function ε(x). The goal is to eliminate this dependency.
We will first demonstrate that the function αε(x) only depends on the
local behavior of ε(x) near the fixed point. To do this, we need a way to
compare two solutions of Abel’s equation.

We already observed that if α(x) is one solution to Abel’s equation,
then α(x) + p(α(x)) will also be a solution for a periodic function p(x).
Given two solutions to Abel’s equation, αε1 and αε2 , we can compute the
periodic function relating the two by

p(x) = αε1(α
−1
ε2

(x))− x.
For example, if ε1(x) = e−x and ε2(x) = e−2x, we produce the periodic
function shown in Fig. 2.
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Figure 2. αε1(α
−1
ε2

(x))− x is periodic.

The difference between the peaks and the troughs is small in Fig. 2,
about 0.000171. This gives us a way to measure the difference in the
solutions of αε1(x) and αε2(x). However, this method will give a slightly
different result if we interchange the roles of ε1 and ε2. Rather, we can
use the fact that since p(x) is periodic, then so is

ln(p′(x) + 1) = ln

(
α′ε1(α

−1
ε2

)

α′ε2(α
−1
ε2

)

)
.
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Now interchanging αε1(x) and αε2(x) will negate this expression, plus
evaluate it at αε2(α

−1
ε1

(x)). Thus, the difference between peaks and
troughs of ln(p′(x)+1) is independent of the order of ε1 and ε2. If we let
this difference be d(αε1 , αε2), then we have a metric on the set of normal-
ized C1 solutions to Abel’s equation. (The triangle inequality is an easy
consequence of the variance of the sum of two periodic functions can be
no more than the sum of the individual variances.) We can refer to this
as the log ratio metric. In the example above, d(αε1 , αε2) ≈ 0.0010724.
Note that the solution given in [7] does not have a continuous derivative,
so this metric could not be used for this solution.

4. Exploring the Local Behavior

In order to show that the effect of perturbing the problem by ε(x)
only depends on the local behavior of ε, we can try the perturbation
trick on a polynomial. Let Tm be the m-th degree Taylor polynomial of
ex centered at 0,

Tm =
m∑
i=0

xi

i!
.

The goal is to solve Abel’s equation for Tm for m ≥ 1 instead of ex. That
is, we will find a solution to

A(Tm) = A(x) + 1.

We will again perturb this by the function ε(x), where ε(0) = −1, ε′(x) >
0, and limx→∞ ε(x) = 0. Then G(x) = Tm(x) + ε(x) will have a repulsive
fixed point at x = 0, so we can find a unique normalized solution to
Schröder’s equation analytically extended to include the positive real
axis. By converting this to a solution to Abel’s equation, we get the
function Ψm,ε for which

Ψm,ε(Tm+ε(x)) = Ψm,ε(x)+1, Ψm,ε(x) =
ln(x)

ln(1 + ε′(0))
+O(x) as x→ 0+.

From this solution, we can find a solution for Abel’s equation over
the Taylor polynomial Tm. We find a solution that is asymptotic to
Ψm,ε as x → ∞. If we let T nm(x) be the n-th iterate of the m-th Taylor
polynomial, then we can let
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(11) Am,ε(x) = lim
n→∞

Ψm,ε(T
n
m(x))− n.

Once again, if ε1(x) and ε2(x) are two different perturbation functions,
then for each m, Am,ε1(A

−1
m,ε2

(x))−x will be a periodic function. We can
show that these periodic functions converge. First we need to prove a
simple lemma.

Lemma 1. Let g1(x) and g2(x) be two increasing functions, for which
g1(x) > x, g2(x) > x and [g−11 ]′ < 1/2 for x > N − 1. Let 0 < δ < 1 be
such that |g1(x) − g2(x)| < δ for x > N , and let f(x) be a function for
which |f(x)− x| < δ for x > N . Then

|g−11 (f(g2(x)))− x| < δ for x > N.

Proof. If x > N , g2(x) > N , so |f(g2(x))−g2(x)| < δ, hence |f(g2(x))−
g1(x)| < 2δ. Since [g−11 ]′ < 1/2, we have by the mean value theorem that∣∣∣∣g−11 (a)− g−11 (b)

a− b

∣∣∣∣ < 1

2
whenever a, b > N − 1, a 6= b.

In particular, g1(x) > N and f(g2(x)) > N − δ > N − 1 when x > N , so

|g−11 (f(g2(x)))− g−11 (g1(x))| < 1

2
|f(g2(x))− g1(x)| < δ for x > N.

Proposition 1. Let ε1(x) and ε2(x) be two analytic increasing func-
tions with ε1(0) = ε2(0) = −1, and ε1(x)→ 0 and ε2(x)→ 0 as x→∞.
Then the sequence of periodic functions Am,ε1(A

−1
m,ε2

(x)) − x converge

uniformly to αε1(α
−1
ε2

(x))− x.

Proof. Let 0 < δ < 1. We need to show that for sufficiently large m,

|αε1(α−1ε2 (x))− Am,ε1(A−1m,ε2(x))| < δ

for all x. This is equivalent to saying that

|αε1(α−1ε2 (Am,ε2(A
−1
m,ε1

(x))))− x| < δ.

Because both ε1(x) and ε2(x) approach 0 as x→∞, as well as ψ′ε1(x),
there is an N > 3 such that

(12) |ε1(x)| < δ

4
, |ε2(x)| < δ

4
and ψ′ε1(x) < 1 for all x > N.
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Although Ψm,ε1 and ψε1 are not analytic at x = 0, the combination
Ψ−1m,ε1(ψε1(x)) = S−1m,ε1(σε1(x)), where Sm,ε1 and σε1(x) are the unique
normalized analytic solution to Schröder’s equation for Tm + ε1(x) and
ex + ε1(x), respectively. Since the first m coefficients of Sm,ε1 and Sm,ε2
will match the first m coefficients of σε1 and σε2 respectively, there is
some M such that

(13) |Ψ−1m,ε1(ψε1(x))− x| < δ

4
and |ψ−1ε2 (Ψm,ε2(x))− x| < δ

4

for all m ≥ M on the finite interval 0 < x < eN+1 + 1. Note that
although Eq.12 is valid for the outer region x > N , and Eq. 13 is valid
in the inner region x < eN+1 + 1, there is an overlap region in which
both estimates are valid.

Let g1(x) = ex+ε1(x), and g2(x) = ex+ε2(x). It is clear that f(x) = x
satisfies |f(x)− x| < δ/4, so by induction, we can use Lemma 1 to show
that

|g−n1 (gn2 (x))− x| < δ

4
for all n when x > N.

Since we can express

αε1 = lim
n→∞

ψε1(g
−n
1 (expn(x))), α−1ε2 = lim

n→∞
exp−n(gn2 (ψ−1ε2 (x))),

we have that

ψ−1ε1 (αε1(α
−1
ε2

(ψε2(x)))) = lim
n→∞

g−n1 (gn2 (x)).

Therefore,

|ψ−1ε1 (αε1(α
−1
ε2

(ψε2(x))))− x| < δ

4
when x > N.

Likewise, for any m ≥ M , we find that Tm satisfies the conditions of
Lemma 1 for N > 3, so

|Ψ−1m,ε2(Am,ε2(A
−1
m,ε1

(Ψm,ε1(x))))− x| < δ

4
when x > N.

If N + δ/4 < x < eN+1 + 1− δ/4, then N < ψ−1ε2 (Ψε1(x)) < eN+1 + 1,
so

|ψ−1ε1 (αε1(α
−1
ε2

(ψε2(ψ
−1
ε2

(Ψm,ε2(x))))))− ψ−1ε2 (Ψm,ε2(x))| < δ

4
.

Hence, we have

|ψ−1ε1 (αε1(α
−1
ε2

(Ψm,ε2(x))))− x| < δ

2
.
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If N + δ/2 < x < eN+1 + 1− δ/2, then N + δ/4 < Ψ−1m,ε2(Am,ε2(A
−1
m,ε1

(Ψm,ε1(x)))) < eN+1 + 1− δ/4, so

|ψ−1ε1 (αε1(α
−1
ε2

(Ψm,ε2(Ψ
−1
m,ε2

(Am,ε2(A
−1
m,ε1

(Ψm,ε1(x))))))))

−Ψ−1m,ε2(Am,ε2(A
−1
m,ε1

(Ψm,ε1(x))))| < δ

2
,

hence

|ψ−1ε1 (αε1(α
−1
ε2

(Am,ε2(A
−1
m,ε1

(Ψm,ε1(x))))))− x| < 3δ

4
.

Finally, if N + 3δ/4 < x < eN+1 + 1 − 3δ/4, then N + δ/2 <
Ψ−1m,ε1(ψε1(x)) < eN+1 + 1− δ/2, so

|ψ−1ε1 (αε1(α
−1
ε2

(Am,ε2(A
−1
m,ε1

(Ψm,ε1(Ψ
−1
m,ε1

(ψε1(x))))))))−Ψ−1m,ε1(ψε1(x))| < 3δ

4
.

From this, we have that

|ψ−1ε1 (αε1(α
−1
ε2

(Am,ε2(A
−1
m,ε1

(ψε1(x))))))− x| < δ.

In particular, since δ < 1, this will be valid on the interval N + 1 ≤ x ≤
eN+1.

Since ψ′ε1(x) < 1 for x > N + 1, we can use the mean value theorem
to show that

|ψε1(a)− ψε1(b)| < |a− b|

when both a and b are at least N + 1. So

|αε1(α−1ε2 (Am,ε2(A
−1
m,ε1

(ψε1(x)))))− ψε1(x)| < δ

for N + 1 ≤ x ≤ eN+1, so

|αε1(α−1ε2 (Am,ε2(A
−1
m,ε1

(x))))− x| < δ

for ψ−1ε1 (N+1) ≤ x ≤ ψ−1ε1 (eN+1). Since eN+1 + ε1(N+1) < eN+1, we see
that this interval is over one unit in length. Since αε1(α

−1
ε2

(Am,ε2(A
−1
m,ε1

(x))))
−x is periodic with period 1, this means that

|αε1(α−1ε2 (Am,ε2(A
−1
m,ε1

(x))))− x| < δ

for all x.
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5. Comparing with the Natural Solution

At this point, we can compare any two solutions of Abel’s equation
α(ex) = α(x) + 1. If there were a “natural” solution to Abel’s equation,
we could compare this solution with another solution produced by the
perturbation ε(x) by the periodic function p(x) = α(α−1ε ((x)) − x. In
fact, if we know this periodic function, we can reproduce the natural
solution α(x).

Proposition 1 shows that p(x) would only depend on the local behav-
ior of ε(x) and ex, since replacing ex with a Taylor polynomial approx-
imation Tm produces approximately the same periodic function. But
Abel’s equation for Tm does have a natural solution, since Tm is a poly-
nomial! We can solve Böttcher’s equation βm(Tm(x)) = (βm(x))m, and
let αm(x) = ln(ln(βm(x)))/ ln(m). If indeed αm(α−1ε ((x))− x converges
to a periodic function as m → ∞, we could use this period function to
peel off the effects of the perturbation function ε(x), giving us a solution
that is independent of which ε(x) that we chose.

Plugging a Taylor polynomial for ex into Eq. 2 causes it to simplify
greatly.

βm(x) = (m!)1/(1−m)

(
x+ 1 +

m− 1

2x
+

(m− 1)(2m− 7)

6x2

+
(m− 1)(6m2 − 55m+ 95)

24x3
+ · · ·

)
.

Since the point at ∞ will attract any positive number as long as m >
1, we can analytically extend this function to include the positive real
axis. We can then let Am = ln(ln(βm(x)))/ ln(m), which will satisfy
Am(Tm) = Am(x) + 1.

For a given perturbation ε(x), we can see the effect of using the per-
turbed Taylor polynomial verses the natural Taylor polynomial by com-
puting

pm,ε(x) = Am(A−1m,ε(x))− x,

which will again be a periodic function. The natural question is whether
pm,ε(x) converges to a single periodic function Pε(x) as m → ∞. If it
did, we could define α(x) to be

α(x) = Pε(ψε) + ψε.



Finding the natural solution to f(f(x)) = exp(x) 97

By proposition 1, this would not depend on which perturbation function
ε we chose, so we would succeed in finding a natural solution to Abel’s
equation.
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Figure 3. Am(A−1m,ε(x))− x for m = 3, 4, 5, 6, 7.

Unfortunately, the pm,ε do not converge, even if first we normalize
Am and Am,ε so that Am(1) = Am,ε(1) = 0. Fig. 3 shows pm,ε for
ε(x) = −e−x and 3 ≤ m ≤ 7. The amplitude of the periodic functions
grow exponentially with m, and this pattern persists with larger m.
Thus, we cannot use the pm,ε to remove the dependence of the ε(x) as
we had hoped.

None-the-less, we can use the log ratio metric to find which ε(x) causes
αε to come closest to the “natural solution” found in Eq. 4. The results
are given in Table 1. We see that in fact using ε(x) = −e−2x gives a
very close approximation to the solution found in Eq. 4, even though
the later is not a precise solution.

ε = −1 ε = −e−x ε = −e−2x ε = −e−3x g−1∞ (x)
“Natural” α(x) 0.0049983 0.0013073 0.0003448 0.0048961 0.0134455
ε = −1 0.0062916 0.0052950 0.0082153 0.0183861
ε = −e−x 0.0010724 0.0047838 0.0121379
ε = −e−2x 0.0046229 0.0131907
ε = −e−3x 0.0133121

Table 1. Metric distance between various solutions.

Another question is whether there is an ε(x) for which the solution to
Abel’s equation is particularly easy to find. That is, we would like an
ε(x) that satisfies the properties of Sect. 3, as well as
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• g(x) = ex + ε(x) is easy to invert.
• The entire half plane =(x) > 0 is in the basin of attraction for the

fixed point 0 of g−1(x).

An obvious such ε(x) would be ε(x) = −e−x, since ex + ε(x) =
2 sinh(x). This has an easy to compute inverse, sinh−1(x/2). If we
use the principle inverse, the entire complex plane is in the basin of at-
traction of the fixed point at 0. [9] In fact, calculating αε(x) is possible
on a scientific calculator. The fact that ex + ε(x) is an odd function
makes it particularly easy, since using only 2 terms of the series for ψ(x)
give exceptional accuracy.

1. Do ex → x until x > 230.25, counting the number of times the
operation is done.

2. Do sinh−1(x/2)→ x the number of times in step 1. If the calculator
doesn’t have hyperbolic functions, use ln((x+

√
x2 + 1)/2)→ x.

3. Do sinh−1(x/2)→ x until x < 0.01, counting the number of times
the operation is done.

4. Calculate (ln(x)− x2/18)/ ln(2).
5. Add the count from step 3.
6. Subtract 0.06783836607 to normalize the function so that α(1) = 0.

We can invert the function in a similar way , for x > −2.

1. Add 0.06783836607 so that α−1(0) = 1.
2. Subtract an integer so that x < −7.
3. Calculate 2x + 8x/18.
4. Do 2 sinh(x) → x the number of times in step 2. Note that

2 sinh(x) = ex − e−x.
5. Do 2 sinh(x)→ x until x > 230.25, counting the number of times.
6. Do lnx→ x the number of times in step 5.

These routines are guaranteed to give 10 places of accuracy, and are
designed to balance accumulative error and limit errors. Since f(x) =
α−1(α(x) + 1/2) solves the equation f(f(x)) = ex, we have a way to
compute the title problem.

6. Generalizations

Having found a plausible orthodox solution to Abel’s equation for ex,
let us consider a way to generalize it to cover fractional iterations of ax

for a > e1/e. This would solve the tetration problem. Note that when
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a = e1/e, ax has a fixed point at x = e, so there is an orthodox tetration
for 1lea ≤ e1/e using Julia’s equation [14].

The obvious generalization would suggest letting ε(x) = −a−x, but
ax−a−x produces an additional positive fixed point for a <

√
e. In fact,

when a is close to e1/e, perturbing the function by any amount will cause
a fixed point to be produced near x = e. In order to assure that there
will be only one fixed point of the perturbed function for all a > e1/e,
we must have the fixed point move, depending on the value of a.

Let us determine where the function ax comes closest to the line y = x,
by finding the critical point of ax − x. We find that this point is at
ξa = − ln(ln a)/ ln(a), so we will choose εa(x) = −ca−x so that ax+εa(x)
will have a fixed point at ξa. This produces c = (1 + ln(ln(a)))/ ln(a)2,
so we find that

ga(x) = ax + εa(x) = ax − 1 + ln(ln(a))

(ln(a))2
a−x.

We find that this function can still be readily inverted via the quadratic
equation.

g−1a (x) =
ln
(

1
2

(√
x2(ln(a))2 − 2x ln(ln(a)) ln(a) + (ln(ln(a)) + 2)2

))
ln(a)

+
ln
(
1
2

(x ln(a)− ln(ln(a)))
)

ln(a)
.

Note that when a = e, εa(x) simplifies to −e−x, and when a = e1/e,
εa = 0. Thus we have a smooth transition between our solution for
a = e and the point where there is a known solution.

We can solve Abel’s equation for ax + εa(x), since there is now a fixed
point at ξa. This produces the function ψa(x), whose first three terms
of the series expansion about x = ξa are

ψa(x) =
1

ln(2 + ln(ln(a)))

(
ln(x− ξa)

+
ln(a) ln(ln(a))

2(1 + ln(ln(a)))(2 + ln(ln(a)))
(x− ξa)

+
ln(a)2 (5 ln(ln(a))3 − 5 ln(ln(a))2 − 32 ln(ln(a))− 16)

24(ln(ln(a)) + 1)2(ln(ln(a)) + 2)2(ln(ln(a)) + 3)
(x− ξa)2

+ · · ·
)
.
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Then ψa solves the equation ψa(a
x + εa(x)) = ψa(x) + 1. We can also

find the series for the inverse function.

ψ−1a (x) = ξa + (2 + ln(ln(a)))x − ln(a) ln(ln(a))(2 + ln(ln(a)))2x

2(1 + ln(ln(a)))(2 + ln(ln(x)))

+
(ln(a))2(ln(ln(a))3 + 8 ln(ln(a))2 + 8 ln(ln(a)) + 4)(2 + ln(ln(a)))3x

6(1 + ln(ln(a)))2(2 + ln(ln(a)))2(3 + ln(ln(a)))
+ · · · .

Finally, we can express

αa(x) = lim
n→∞

ψa(g
−n
a (expna(x))), and α−1a (x) = lim

n→∞
exp−na (gna (ψ−1a (x))).
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Figure 4. α−1a (x) for a = e1/e, 3/2, 2, and e.

The graphs for α−1a (x) for various a are shown in Fig. 4. Also shown
in this figure is αe1/e(x), which has a natural solution. Since

h
(

(e1/e)h
−1(x)

)
= ex − 1 when h = lnx− 1,

we see that (e1/e)x is naturally conjugate to ex − 1, which we have seen
has a natural solution to Abel’s equation in Eq. 7. Hence, we have

(14) αe1/e(x) = ψ(lnx− 1) + C

for some constant C, using the ψ from Eq. 7.
We can see in Fig. 4 that as a approaches e1/e, there is a section of

the graph of α−1a (x) that is nearly horizontal, caused by the “bottleneck”
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created where the graph of y = ax is very close to the line y = x. This
begs the question as to whether the limit of α−1a (x) approaches α−1

e1/e
(x),

at least pointwise, as a → e1/e. Proposition 1 suggests that the effect
of adding ε(x) to solve Abel’s equation only effects the solution based
on the local behavior of ε(x), and since εa(x) → 0 as a → e1/e, this
effect should vanish. However, the situation is different here than for
proposition 1, so we need another proposition. First let us develop a
useful lemma.
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Figure 5. Analysis of iterations near a “bottleneck.”

Lemma 2:
For each a > a0, let x < fa(x) and x < ga(x) be increasing, concave

up analytic functions on the interval 0 ≤ x ≤ N . Suppose also that
fa(x) and ga(x) both approach the analytic function f0(x) uniformly as
a→ a0, where f0(x) has a fixed point at x0. Let xa be the local minimum
of fa(x)− x, and ξa be the local minimum of ga(x)− x. Suppose that

fa(xa)− xa = ga(ξa)− ξa = ηa,

that is, fa and ga have the same minimum distance to the line y = x. Let
ha(x) be functions that uniformly converge to the function x. Finally,
suppose that there is some M such that

(15)

∣∣∣∣∣ 1√
f ′′a (xa)

− 1√
g′′a(ξa)

∣∣∣∣∣ ≤Mηa.
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Then for all δ > 0, there is an aδ such that

|f−ma (ha(g
m
a (x)))−x| < δ whenever a0 < a < aδ and gma (x) < N.

Proof: If there were some m such that gma (x) > N for all a, the proof
would be obvious, since gma (x) and fma (x) would both uniformly converge
to fm0 (x) as a→ a0, and ha(x) is already uniformly converging to x. The
issue is that if 0 ≤ x0 ≤ N , then as a → a0, the number of iterates of
fa(x) and ga(x) needed to get past x0 goes to infinity. See Fig. 5.

The region of interest is the “bottleneck” area, where |x − xa| =
O(
√
ηa). If f ′′a (xa) = ka, we can approximate fa within this region by

fa(x) = ηa + x+ ka
(x− xa)2

2
+O(η3/2a ).

If we divide the bottleneck region into subintervals of width ∆xi, then
the number of iterates of fa(x) needed to get past this subinterval is
approximately

∆xi
fa(x∗i )− x∗i

≈ ∆xi
ηa + ka(x∗i − xa)2/2

,

where x∗i is a representative point of the interval. The sum of these is a
Riemann sum for the integral∫ ∞
−∞

dx

ηa + ka(x− xa)2/2
=

√
2 tan−1(

√
kax/
√

2ηa)√
kaηa

∣∣∣∣∣
∞

−∞

=
π
√

2√
ηaf ′′a (xa)

.

Likewise, the number of iterates of ga(x) needed to get past the same

region is π
√

2/
√
ηag′′a(ξa). Using Eq. 15, we see that the difference in the

number of iterates is bounded by πM
√

2ηa, which goes to 0 as a→ a0.
If we had kept higher order terms, the corrections would also go to 0 as
a → a0. Thus, |f−ma (gma (x)) − x| < δ for a sufficiently close to a0 if the
iterates are within the bottleneck region. We have already covered the
case outside this region, so the proof is complete.

The key to this lemma was the fact that fa and ga had very similar
“bottlenecks.” We can create a function with a similar bottleneck of ax

by defining

ka(x) = ex/e +
1 + ln(ln(a)

ln(a)
.

We have already observed that the local minimum of ax−x is at (− ln(ln(a))
/ ln(a), (1 + ln(ln(a))/ ln(a)), and we designed ka(x)− x to have a local
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minimum at (e, (1 + ln(ln(a))/ ln(a)). Then since∣∣∣∣∣ 1√
f ′′a (xa)

− 1√
g′′a(ξa)

∣∣∣∣∣ =

∣∣∣∣ 1√
ln a
−
√
e

∣∣∣∣ < 1 + ln(ln a)

ln a
for a < 3,

we can use M = 1 in the conditions of the lemma.
Let us find a solution to Abel’s equation for the function ka(x), valid

for x < e. We already have a solution to α(ex/e) = α(x) + 1 valid for
x > e, namely αe1/e from Eq. 14. We can let

φa(x) = lim
n→∞

αe1/e(exp−n
e1/e

(kna (x))).

Then even for x < e,

φa(ka(x)) = lim
n→∞

αe1/e(exp−n
e1/e

(kn+1
a (x)))

= lim
n→∞

αe1/e(expe1/e(exp−n−1
e1/e

(kn+1
a (x)))

= lim
n→∞

αe1/e(expe1/e(exp−n−1
e1/e

(kn+1
a (x)) + 1 = φa(x) + 1.

Proposition 2. Given δ > 0, there is an a0 such that

|φ−1a (αa(x))− x| < δ for x > 0 and e1/e < a < a0.

Proof. We can express

φ−1a (x) = lim
n→∞

k−na (expne1/e(α
−1
e1/e

(x))).

Thus,

φ−1a (αa(x)) = lim
n→∞

k−na (expne1/e(α
−1
e1/e

(ψa(g
−n
a (expna(x)))))).

Since we can find an a0 such that |ga(x)−ax| < δ/4 for e1/e < a < a0,
we can use Lemma 1 to show that

|g−na (expna(x))− x| < δ

4
.

Likewise, we can pick a0 small enough so that

|k−na (expne1/e(x))− x| < δ

4
.

However, the conditions of this lemma are only valid for x > 2e + 1. If
it takes m iterations of ax or ka to get from x past the bottleneck to
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beyond 2e+ 2, then we can express

φ−1a (αa(x)) = lim
n→∞

k−ma (k−na (expne1/e(expme1/e(α
−1
e1/e

(ψa

(g−ma (g−na (expna(expma (x)))))))))).

We now proceed as in proposition 1. For a given x, we can find an m
(possibly negative) such that

2e+ 2 ≤ expma (x) ≤ a2e+2 < 3/22e+2.

By Lemma 1, we have

|g−na (expna(expma (x)))− expma (x)| < δ

4
.

which would indicate that 2e+2−δ/4 < g−na (expna(expma (x))) < (3/2)2e+2+
δ/4.

Note that ψa(g
−m
a (x)) = ψa(x)−m, and α−1

e1/e
(x−m) = exp−m

e1/e
(α−1

e1/e
(x)).

Thus,
expme1/e(α

−1
e1/e

(ψa(g
−m
a (x)))) = α−1

e1/e
(ψa(x)).

Although αe1/e(x) and ψa(x) are undefined at the fixed points,

λ(x) =
1

α′
e1/e

(x)
and λa(x) =

1

ψ′a(x)

have unique formal power series near the fixed point. Since the power
series of λa approaches the power series for λ as a → e1/e, we can find
an a0 such that

|α−1
e1/e

(φa(x))− x| < δ

4
for all e < x < 2e+2−δ/4, and e1/e < a < a0. Since g−na (expna(expma (x)))
will be larger than 2e+ 2− δ/4, we have

| expme1/e(α
−1
e1/e

(ψa(g
−m
a (g−na (expna(expma (x)))))))−g−na (expna(expma (x)))| < δ

4
,

so

| expme1/e(α
−1
e1/e

(ψa(g
−m
a (g−na (expna(expma (x)))))))− expma (x)| < δ

2
.

Since expm
e1/e

(α−1
e1/e

(ψa(g
−m
a (g−na (expna(expma (x))))))) > 2e + 2 − δ/2, we

can use Lemma 1 to show that

|k−na (expn+m
e1/e

(α−1
e1/e

(ψa(g
−n−m
a (expna(expma (x)))))))

− expme1/e(α
−1
e1/e

(ψa(g
−n−m
a (expna(expma (x))))))| < δ

4
,
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so

|k−na (expn+m
e1/e

(α−1
e1/e

(ψa(g
−n−m
a (expna(expma (x)))))))− expma (x)| < 3δ

4
.

If we let y = expma (x) and h(y) = k−na (expn+m
e1/e

(α−1
e1/e

(ψa(g
−n−m
a ( expna(y)

))))), we find that h(x) does not depend on m, and in fact uniformly
converges to x as a→ e1/e. Thus, we can use Lemma 2 with fa = ka and
ga = ax, with N = (3/2)2e+2 + 1, to show that for a sufficiently close to
e1/e,

|k−ma (k−na (expne1/e(expme1/e(α
−1
e1/e

(ψa(g
−m
a (g−na (expna(expma (x))))))))))−x| < δ

Taking the limit as n→∞ gives us our result.

Corollary 1. The function αa(x) approaches αe1/e for x < e as
a→ e1/e. Hence, this tetration passes the continuity requirement.

Proof. Both αa(x) and αe1/e are normalized so that αa(1) = 0 and
αe1/e(1) = 0. It is clear that for a closed interval not including e, φa(x)
with the same normalization will uniformly approach αe1/e , since ka(x)
uniformly approaches ex/e, and the interval would not include the bot-
tleneck region. But proposition 1 shows that αa(x) is uniformly close
to φa(x), so αa(x) uniformly approaches αe1/e on any closed interval not
including e.

7. Conclusion

By embracing the fact that the solution to Abel’s equation is not
unique, we have formed a metric allowing us to measure distances be-
tween solutions. We also found one solution that is particularly easy to
calculate, that is more or less “in between” other proposed solutions. We
were able to extend this solution to solve the fractional iterates of ax,
and proved that this new solution approaches the established solution
as a approaches the critical value of e1/e. Hence, we have a viable new
solution to the tetration problem.

We still have yet to study how this new solution behaves in the com-
plex plane. This can be explored in a future paper.
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Größen x und y, wie f(x, y), welche die Eigenschaft haben, ..., Journal für die
reine und angewandte Mathematik, 1 (1826), 11–15.

[2] C. C. Cowen, Analytic solutions of Böttcher’s functional equation in the unit
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