Korean J. Math. **20** (2012), No. 4, pp. 525–532 http://dx.doi.org/10.11568/kjm.2012.20.4.525

LIFTS OF THE TERNARY QUADRATIC RESIDUE CODE OF LENGTH 24 AND THEIR WEIGHT ENUMERATORS

Young Ho Park

ABSTRACT. We study the extended quadratic residue code of length 24 over \mathbb{Z}_3 and its lifts to rings \mathbb{Z}_{3^e} for all e including 3-adic integers ring. We completely determine the weight enumerators of all these lifts.

1. Introduction

Let R be a ring. A *linear code* of length n over R is a R-submodule of R^n . We define an inner product on R^n by $(x, y) = \sum_{i=1}^n x_i y_i$ where $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$. The *dual code* C^{\perp} of a code C of length n is defined to be $C^{\perp} = \{y \in R^n \mid (y, x) = 0 \text{ for all } x \in C\}$. C is *self-dual* if $C = C^{\perp}$.

For $v \in \mathbb{R}^n$, the weight wt(v) of v is defined to be the number of nonzero components of v. The minimum distance of a code C is the minimum of wt(v) for nonzero $v \in C$. For generality on codes over fields, we refer [5] and [8]. For codes over \mathbb{Z}_m , see [12], and for self dual codes, see [11].

Now we define the quadratic residue codes over \mathbb{Z}_3 [8]. Let

$$Q = \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\}$$

© The Kangwon-Kyungki Mathematical Society, 2012.

Received November 10, 2012. Revised December 7, 2012. Accepted December 10, 2012.

²⁰¹⁰ Mathematics Subject Classification: 94B05, 11T71.

Key words and phrases: quadratic residue code, code over rings, self-dual code, p-adic code, weight enumertaor.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Conercial License (http://creativecommons.org/licenses/bync/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Young Ho Park

be the set of nonzero quadratic residues modulo 23, N the set of quadratic nonresidues modulo 23. Note that 3 is a quadratic residue modulo 23. Since $3 \nmid 23$, there exists a 23^{rd} primitive root ζ of 1 over \mathbb{Z}_3 . Let

$$Q(x) = \prod_{i \in Q} (x - \zeta^i), \quad N(x) = \prod_{i \in N} (x - \zeta^i).$$

The order of 3 modulo 23 is 11. Hence the cyclotomic cosets modulo 23 over \mathbb{Z}_3 are given by $\{0\}, Q, N$. Therefore, Q(x) and N(x) are polynomials in $\mathbb{Z}_3[x]$. See [7] for detail. Indeed, we can choose an ζ such that

$$Q(x) = x^{11} - x^8 - x^6 + x^4 + x^3 - x^2 - x - 1,$$

$$N(x) = x^{11} - 2x^{10} - 2x^9 - x^8 - x^7 + x^5 + x^3 - 1.$$

We have that

$$x^{23} - 1 = (x - 1)Q(x)N(x).$$

Notice that the choice of Q(x) and N(x) depends on the choice of the primitive root ζ . In fact, the replacement of ζ by ζ^i with $i \in N$ interchanges Q(x) and N(x).

DEFINITION 1.1. Cyclic codes $\mathcal{Q}, \mathcal{Q}_1, \mathcal{N}, \mathcal{N}_1$ of length 23 with generator polynomials

Q(x), (x-1)Q(x), N(x), (x-1)N(x),

respectively, are called **quadratic residue codes** defined over \mathbb{Z}_3 .

We extend \mathcal{Q} and \mathcal{N} by adding the overall parity check 1. The resulting extended codes will be denoted by $\hat{\mathcal{Q}}$ and $\hat{\mathcal{N}}$.

We have the following well-known results on quadratic residue codes defined over the field \mathbb{Z}_3 .

- 1. dim $\mathcal{Q} = \dim \mathcal{N} = 12$, dim $\mathcal{Q}_1 = \dim \mathcal{N}_1 = 11$. 2. $\mathcal{Q}^{\perp} = \mathcal{Q}_1, \ \mathcal{N}^{\perp} = \mathcal{N}_1$.
- 3. Extended codes \hat{Q} , \hat{N} are **self-dual**.
- 4. $Aut\hat{Q}$ contains $PSL_2(24)$.

Denote by \mathbb{Z}_{3^e} the ring of integers modulo 3^e , and $\mathbb{Z}_{3^{\infty}}$ the ring of 3adic integers. In next section we are going to lift these quadratic residue codes over \mathbb{Z}_{3^e} and to the 3-adic integers $\mathbb{Z}_{3^{\infty}}$.

526

2. Quadratic residue codes over \mathbb{Z}_{3^e}

Quadratic residue codes over \mathbb{Z}_{3^e} are usually defined by giving their idempotent generators. See [10] for quadratic residue codes over \mathbb{Z}_{16} and [15] for codes over \mathbb{Z}_9 for example. However it is generally difficult to give general formulas for such generators. We will define quadratic residue codes over \mathbb{Z}_{3^e} in a similar way as in the field case. The 3-adic case $(e = \infty)$ is also included here. The idempotent generators for quadratic residue codes over \mathbb{Z}_{3^e} can be obtained from idempotent generators of quadratic residue codes over \mathbb{Z}_{3^∞} . For codes over *p*-adic integers, we refer [3].

Let \mathbb{Q}_3 denote the field of 3-adic numbers. Let K be the splitting field of $x^{23} - 1$ over \mathbb{Q}_3 . Since the roots of $x^{23} - 1$ in K form a multiplicative group of order 23, it is clear that there exists an element ζ such that $K = \mathbb{Q}_3[\zeta]$. By considering the map

$$\Psi_e : \mathbb{Z}_{3^{\infty}} \to \mathbb{Z}_{3^e}, \quad \Psi_e(a) = a \pmod{3^e}$$

and extending it to $\mathbb{Z}_{3^{\infty}}[\zeta]$, we can easily see that

$$\mathbb{Z}_{3^e}[\zeta] \simeq \mathbb{Z}_{3^\infty}[\zeta]/(3^e).$$

 $\mathbb{Z}_{3^e}[\zeta]$ is a Galois ring defined over \mathbb{Z}_{3^e} . Elements in $\mathbb{Z}_{3^e}[\zeta]$ can be written uniquely in a ζ -adic expansion $u = \sum_{i=0}^{2^2} v_i \zeta^i$, $v_i \in \mathbb{Z}_{3^e}$ or in a 3-adic expansion

$$u = u_0 + 3u_1 + 3^2 u_2 + \dots + 3^{e-1} u_{e-1}$$

where $u_i \in \{0, 1, \zeta, \dots, \zeta^{22}\} \simeq \mathbb{Z}_{23}$, the finite field of 23 elements. In 3adic integer case, this sum is infinite. The automorphism group of $\mathbb{Z}_{3^e}[\zeta]$ over \mathbb{Z}_{3^e} is the cyclic group generated by the Frobenius automorphism

$$\mathcal{F}(\sum_{i=0}^{e-1} 3^i u_i) = \sum_{i=0}^{e-1} 3^i u_i^3.$$

We refer [1] or [9] for details. As in the field case, we let

$$Q_e(x) = \prod_{i \in Q} (x - \zeta^i), \quad N_e(x) = \prod_{i \in N} (x - \zeta^i).$$

Since $3 \in Q$ we have

$$\mathcal{F}(Q_e(x)) = \prod_{i \in Q} (x - \zeta^{3i}) = \prod_{i \in Q} (x - \zeta^i) = Q_e(x)$$

Young Ho Park

and similarly $\mathcal{F}(N_e(x)) = N_e(x)$. Thus Q(x) and N(x) are polynomials in $\mathbb{Z}_{3^e}[x]$. We certainly have that

$$x^{23} - 1 = (x - 1)Q_e(x)N_e(x)$$

and for all $e' \geq e$,

$$Q_{e'}(x) \equiv Q_e(x) \pmod{3^e}, \quad N_{e'}(x) \equiv N_e(x) \pmod{3^e}.$$

DEFINITION 2.1. Cyclic codes $Q^e, Q_1^e, \mathcal{N}^e, \mathcal{N}_1^e$ of length 23 with generator polynomials

$$Q_e(x), (x-1)Q_e(x), N_e(x), (x-1)N_e(x),$$

respectively, are called **quadratic residue codes** over \mathbb{Z}_{3^e} .

It can be shown that the polynomial $x^{23} - 1$ factors over $\mathbb{Z}_{3\infty}[x]$ as follows:

$$x^{23} - 1 = (x - 1)Q_{\infty}(x)N_{\infty}(x)$$

where

$$Q_{\infty}(x) = x^{11} - \lambda x^{10} + (-\lambda - 3)x^9 - 4x^8 + (\lambda - 3)x^7 + (2\lambda - 1)x^6 + (2\lambda + 3)x^5 + (\lambda + 4)x^4 + 4x^3 - (\lambda - 2)x^2 - (\lambda + 1)x - 1,$$

and λ is a root of $x^2 + x + 6 = 0$ in $\mathbb{Z}_{3^{\infty}}$ such that $\lambda \equiv 0 \pmod{3}$. The polynomial $N_{\infty}(x)$ is obtained from $Q_{\infty}(x)$ by replacing λ by another root μ of $x^2 + x + 6 = 0$. Note that $\mu = -\lambda - 1$. For details, we refer [6], [13] and [14].

Then the generator polynomials over \mathbb{Z}_{3^e} can be obtained by applying the projection Ψ_e :

$$Q_e(x) = \Psi_e(Q_\infty(x)), \quad N_e(x) = \Psi_e(N_\infty(x)).$$

3. Weight enumerators

Let p be a prime. Let C be a p-adic [n, k] code, $C^e = \Psi_e(C)$ be the projection of C over \mathbb{Z}_{p^e} and A_i^e be the number of codewords of weight i in C^e . Then

$$W_{\mathcal{C}^e}(x,y) = \sum_{i=0}^n A_i^e x^{n-i} y^i$$

is called the weight enumerator of C^e .

528

THEOREM 3.1 (MacWilliams Identity). Let $q = p^e$ and $C = C^e$. Then

$$W_{C^{\perp}}(x,y) = \frac{1}{|C|} W_C(x + (q-1)y, x-y).$$

The following theorem is essentially proved in [8] and [11].

THEOREM 3.2 (Gleason's type theorem). Suppose C is a self-dual code over \mathbb{Z}_{p^e} of even length. Then $W_C(x, y)$ is a polynomial in $x^2 + (p^e - 1)y^2$ and $xy - y^2$.

We know that the minimum distance of C^e is equal to the minimum distance of C^1 for all e (see [2]). The following theorem is also proved in [2].

THEOREM 3.3. There is an integer N such that for every $d \leq j < d_{\infty}$,

$$A_j^e = A_j^N$$

for all $e \geq N$.

Moreover, the following theorem shows that we can stop the computation of A_i 's at the appropriate stage without knowing the bound Ngiven in the previous theorem.

THEOREM 3.4. [14] Suppose that $f \ge 2$ and $A_i^f = A_i^{f-1}$ for all $i \le j$. Then $A_j^e = A_j^f$ for all $e \ge f$.

Let G_1 be the generator matrix for \mathcal{Q}_1^{∞} ... Then the generator matrix of the extended quadratic residue code $\hat{\mathcal{Q}}^{\infty}$ is given by

$$\begin{pmatrix} G_1 & 0 \\ \mathbf{1} & \gamma n \end{pmatrix}$$

where $\mathbf{1} = (1, 1, \dots, 1)$ of length 23 and $1 + 23\gamma^2 = 0$ in $\mathbb{Z}_{3\infty}$. As before, $\hat{\mathcal{Q}}^e$ denotes $\Psi_e(\hat{\mathcal{Q}}^\infty)$. Theorem 3.2 gives the following:

THEOREM 3.5. Then the weight enumerator $W^e(x, y)$ of $\hat{\mathcal{Q}}^e$ is completely determined by A_0^e, \dots, A_{12}^e as follows:

$$W^{e}(x,y) = \sum_{j=0}^{12} c_{i} \left(x^{2} + (q-1)y^{2}\right)^{j} (xy - y^{2})^{4-j}.$$

Young Ho Park

weight	0	9	10	11	12
e = 1	1	4048	0	0	61824
e=2	1	4048	0	72864	717600
e=3				72864	658352
e=4					1956288
e=5					2721360
e = 6					2721360
TABLE 1 Weights of \hat{O}^e					

TABLE 1. Weights of \mathcal{Q}^{ϵ}

A computer calculation based on [4] gives us the Table 1 of weights of $\hat{\mathcal{Q}}^e$ for $e = 1, \dots, 6$.

This table shows that \hat{Q}^e are [24, 12, 9]-code. The blank spaces in the table and weights 0 - 12 for $e \ge 7$ can be filled by Theorem 3.4. Then Theorem 3.5 gives the weight enumerators as follows:

$$\begin{split} W^1(x,y) &= x^{24} + 4048x^{15}y^9 + 61824x^{12}y^{12} + 242880x^9y^{15} + \\ & 198352x^6y^{18} + 24288x^3y^{21} + 48y^{24}, \end{split}$$

$$\begin{split} W^2(x,y) &= x^{24} + 4048x^{15}y^9 + 72864x^{13}y^{11} + 717600x^{12}y^{12} + \\ &\quad 4630176x^{11}y^{13} + 30530016x^{10}y^{14} + 164624064x^9y^{15} + \\ &\quad 730206576x^8y^{16} + 2757647376x^7y^{17} + 8593159168x^6y^{18} + \\ &\quad 21684544992x^5y^{19} + 43367486976x^4y^{20} + 66114704832x^3y^{21} + \\ &\quad 72095794848x^2y^{22} + 50165446464xy^{23} + 16719966480y^{24}, \end{split}$$

$$\begin{split} W^3(x,y) &= x^{24} + 4048x^{15}y^9 + 72864x^{13}y^{11} + 658352x^{12}y^{12} + 59234016x^{11}y^{13} + \\ & 744038592x^{10}y^{14} + 14898518272x^9 \ y^{15} + 213070985424x^8y^{16} + \\ & 2615794866432x^7y^{17} + 26432852979280x^6y^{18} + 217053362753568x^5y^{19} + \\ & 1410815464735248x^4y^{20} + 6986921266743616x^3y^{21} + 24771798631643712x^2y^{22} + \\ & 56005809423748608xy^{23} + 60672959726017088y^{24}, \end{split}$$

530

$$\begin{split} V^4(x,y) &= x^{24} + 4048x^{15}y^9 + 72864x^{13}y^{11} + 1956288x^{12}y^{12} + \\ &\quad 205337376x^{11}y^{13} + 10843401888x^{10}y^{14} + 576780883008x^9y^{15} + \\ &\quad 25945664318640x^8y^{16} + 977089931615952x^7y^{17} + 30396954242486656x^6y^{18} + \\ &\quad 767926111835206368x^5y^{19} + 15358518289524481632x^4y^{20} + \\ &\quad 234034567589881962816x^3y^{21} + 2553104372130271697760x^2y^{22} + \\ &\quad 17760726067437170405568xy^{23} + 59202420224736156032496y^{24}. \end{split}$$

From Table 1, we have that $A_i^e = A_i^5$ for all $i = 0, \dots, 12$ and for all $e \geq 5$. Theorem 3.5 then gives the following values of A_i^e for i = $13, \dots, 24$ with $q = 3^{e}$:

- 1. $A_{13}^e = 6624(-6999 + 452q)$
- 2. $A_{14}^e = 18216(16217 1808q + 111q^2)$
- 3. $A_{15}^e = 12144(-88651 + 13560q 1665q^2 + 108q^3)$
- 4. $A_{16}^e = 2277(1132101 216960q + 39960q^2 5184q^3 + 323q^4)$
- 5. $A_{17}^{e} = 18216(-237270 + 54240q 13320q^2 + 2592q^3 323q^4 + 19q^5)$
- 6. $A_{18}^e = 1012(5170156 1366848q + 419580q^2 108864q^3 + 20349q^4 2394q^5 + 133q^6)$
- 7. $A_{19}^e = 6072(-761184 + 227808q 83916q^2 + 27216q^3 6783q^4 + 1197q^5 133q^6 + 7q^7)$
- 8. $A_{20}^{e} = 1518(1951476 650880q + 279720q^2 108864q^3 + 33915q^4 7980q^5 + 1330q^6 7980q^5 + 7980q^5$ $140q^7 + 7q^8$)
- $210q^7 - 21q^8 + q^9$
- 10. $A_{22}^e = 276(1489410 596640q + 329670q^2 171072q^3 + 74613q^4 26334q^5 + 7315q^6 171072q^5 + 17107$ $1540q^7 + 231q^8 - 22q^9 + q^{10}$
- $\begin{array}{l} 11. \ A_{23}^{e} = 24(-3165054 + 1372272q 842490q^2 + 491832q^3 245157q^4 + 100947q^5 \\ 33649q^6 + 8855q^7 1771q^8 + 253q^9 23q^{10} + q^{11}) \\ 12. \ A_{24}^{e} = 6421278 2994048q + 2021976q^2 1311552q^3 + 735471q^4 346104q^5 + 134596q^6 \\ 42504q^7 + 10626q^8 2024q^9 + 276q^{10} 24q^{11} + q^{12} \end{array}$

Therefore we have completely determined all weight enumerators of the extended quadratic residue codes of length 24 over \mathbb{Z}_{3^e} .

References

- [1] A.R. Calderbank and N.J.A. Sloane, Modular and p-adic and cyclic codes, DCC, **6** (1995), 21–35.
- [2] S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123–135.
- [3] S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. **39** (2006), 65–80.
- [4] S. Han, On the weight enumerators of the projections of the 2-adic Golay codes of length 24, 2012, submitted.

Young Ho Park

- [5] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
- [6] S.J. Kim, Generator polynomials of the p-adic quadratic residue codes, Kangweon-Kyungki Math. J, 13 (2005), 103–112.
- [7] R. Lidl and H. Niederreiter, *Finite Fields*, Cambridge, 2003.
- [8] F.J. MacWilliams and N.J.A. Sloane, *The theory of error-correcting codes*, North-Holland, Amsterdam, 1977.
- [9] B.R. McDonald, Finite rings with identity, Dekker, New York, 1974.
- [10] K. Nagata, F. Nemenzo and H. Wada, On self-dual codes over Z₁₆, Lecture Notes in Computer Science 5527, 107–116, 2009.
- [11] G. Nebe, E. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006.
- [12] Y.H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_m , Des. Codes. Crypt **50** (2009), 147–162.
- [13] Y.H. Park, On lifted codes and p-adic codes their weight enumerators, KIAS international conference on coding theory and applications, 2012.
- [14] Y.H. Park, Quadratic residue codes over p-adic integers and their projections to integers modulo p^e, in preparation, 2012.
- [15] B. Taeri, Quadratic residue codes over \mathbb{Z}_9 , J. Korean Math Soc., 46 (2009), 13–30.

Department of Mathematics Kangwon National University *E-mail*: yhpark@kangwon.ac.kr