Korean J. Math. Vol. 33 No. 2 (2025) pp.13-21
DOI: https://doi.org/10.11568/kjm.2025.33.2.13-21

Bound for the zeros of quaternionic polynomial without restrictions

Main Article Content

BILAL DAR
Abdul Liman

Abstract

In this paper, we are concerned with the problem of locating the zeros of regular polynomials of quaternionic variable without any restriction on the coefficients. We derive new bounds for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets in the newly developed theory of regular functions and polynomials of a quaternionic variable. With no restriction on the coefficients, our results provide new bound for the zeros of quaternionic polynomials in a four dimensional space.



Article Details

References

[1] A. Aziz and B. A. Zargar, Some extension of Eneström–Kakeya theorem, Glas. Mat. 31(2) (1996), 239–244. https://web.math.pmf.unizg.hr/glasnik/vol_31/vol31no2.html Google Scholar

[2] L. Brand, The Roots of a Quaternion, Amer. Math. Monthly 49(8) (1942), 519–520. https://doi.org/10.1080/00029890.1942.11991274 Google Scholar

[3] N. Carney, R. Gardner, R. Keaton and A. Powers, The Eneström–Kakeya theorem of a quaternionic variable, J. Approx. Theory 250 (2020), 105325. Google Scholar

[4] https://doi.org/10.1016/j.jat.2019.105325 Google Scholar

[5] G. Eneström, Remarque sur un théorème relatif aux racines de l’équation aₙxⁿ + ⋯ + a₀ = 0 où tous les coefficients sont réels et positifs, Tôhoku Math. J. 18 (1920), 34–36. Google Scholar

[6] G. Gentili and C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 (2008), 655–667. https://doi.org/10.1307/mmj/1231770366 Google Scholar

[7] G. Gentili and D. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), 279–301. https://doi.org/10.1016/j.aim.2007.05.010 Google Scholar

[8] G. Gentili and D. Struppa, On the multiplicity of zeros of polynomials with quaternionic coefficients, Milan J. Math. 76 (2008), 15–25. https://doi.org/10.1007/s00032-008-0093-0 Google Scholar

[9] N. K. Govil and Q. I. Rahman, On the Eneström–Kakeya theorem, Tôhoku Math. J. 20 (1968), 126–136. Google Scholar

[10] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30(1) (1906), 175–193. https://doi.org/10.1007/BF02418571 Google Scholar

[11] A. Joyal, G. Labelle and Q. I. Rahman, On the location of zeros of polynomials, Can. Math. Bull. 10 (1967), 53–63. https://doi.org/10.4153/CMB-1967-006-3 Google Scholar

[12] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J. 2 (1912–1913), 140–142. Google Scholar

[13] M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. Google Scholar

[14] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994. https://doi.org/10.1142/1284 Google Scholar

[15] S. Mir and A. Liman, Some extensions of Eneström–Kakeya Theorem for quaternionic polynomials, Korean J. Math. 30(4) (2022), 615–628. http://dx.doi.org/10.11568/kjm.2022.30.4.615 Google Scholar

[16] D. Tripathi, A note on Eneström–Kakeya theorem for a polynomial with quaternionic variable, Arab. J. Math. 9 (2020), 707–714. https://doi.org/10.1007/s40065-020-00283-0 Google Scholar