On rigidity of gradient conformal Ricci solitons
Main Article Content
Abstract
A soliton is a self similar solution of a non-linear PDE. Here we are associated with self similar solutions of the conformal Ricci flow which is a heat type pseudo parabolic partial differential equation in the perspective of Riemannian manifolds. The goal of the present article is to find some rigidity results on gradient conformal Ricci solitons. Some characterizations of conformal gradient Ricci solitons have been provided in terms of scalar curvature satisfying the Poisson equation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] C. Aquino, A. Barros, and E. Ribeiro, Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. 60 (1) (2011), 245–254. https://doi.org/10.1007/s00025-011-0166-1 Google Scholar
[2] N. Basu and A. Bhattacharyya, Conformal Ricci solitons in Kenmotsu manifolds, Global J. Adv. Res. Clas. Mod. Geom. 4 (2015), 15–21. Google Scholar
[3] H. D. Cao, Limits of solutions to the Kähler-Ricci flow, J. Differential Geom. 45 (1997), 257–272. Google Scholar
[4] B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (2014), 13–21. Google Scholar
[5] G. Catino, C. Mantegazza, and L. Mazzieri, On the global structure of conformal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012), 1250045. https://doi.org/10.1142/S0219199712500459 Google Scholar
[6] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, AMS, Providence, RI, 2006. https://doi.org/10.1090/gsm/077 Google Scholar
[7] D. Dey and P. Majhi, Almost Kenmotsu metric as a conformal Ricci soliton, Conf. Geom. Dyn. 23 (2019), 105–116. https://doi.org/10.1090/ecgd/335 Google Scholar
[8] S. Dey, A study on conformal Ricci solitons and conformal Ricci almost solitons within the framework of almost contact geometry, Carpathian Math. Publ. 18 (2023), 31–42. https://doi.org/10.15330/cmp.15.1.31-42 Google Scholar
[9] A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Gravity 21 (2004), 3171–3228. https://doi.org/10.1088/0264-9381/21/3/011 Google Scholar
[10] M. Falcitelli, A. Sarkar, and S. Halder, Conformal vector fields and conformal Ricci solitons on α-Kenmotsu manifolds, Mediterr. J. Math. 20 (3) (2023), Article No. 127, 18 pp. https://doi.org/10.1007/s00009-023-02339-9 Google Scholar
[11] W. O. C. Filho, The Poisson equation on compact Ricci solitons and Ricci-harmonic solitons, J. Geom. 114 (2023), Article No. 14. https://doi.org/10.1007/s00022-023-00675-5 Google Scholar
[12] R. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity, Contemp. Math. 71, AMS, Providence, RI, 1988, 237–262. Google Scholar
[13] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), 301–307. https://doi.org/10.1016/0926-2245(93)90008-O Google Scholar
[14] T. Ivey, New examples of compact Ricci solitons, Proc. Amer. Math. Soc. 122 (1994), 241–245. Google Scholar
[15] G. Y. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159. https://doi.org/10.48550/arXiv.math/0211159 Google Scholar
[16] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 242 (2009), 329–345. https://doi.org/10.2140/pjm.2009.241.329 Google Scholar
[17] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171, Springer-Verlag, New York, 1998. Google Scholar
[18] A. Sarkar and S. Halder, Conformal Ricci almost solitons with certain soliton vector fields, Indian J. Pure Appl. Math. (2024). https://doi.org/10.1007/s13226-024-00550-2 Google Scholar
[19] A. Sarkar, A. Sil, and A. K. Paul, Ricci almost solitons on three-dimensional quasi-Sasakian manifolds, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89 (2019), 705–710. https://doi.org/10.1007/s40010-018-0504-8 Google Scholar
[20] W. Tokura, E. Batista, and P. Kai, Triviality results for quasi κ-Yamabe solitons, J. Math. Anal. Appl. 502 (2) (2021), 125274. https://doi.org/10.1016/j.jmaa.2021.125274 Google Scholar